連関資料 :: 実験

資料:323件

  • 半導体レーザーの実験
  • ・概要 発光ダイオードと半導体レーザーでは発光する原理は同じではあるがさまざまな性質の違いがある。今回の実験は半導体の発光素子の特性、性質を調べる実験を行った。 電流電圧特性を調べると、どちらも順方向電圧を加えることによって、ある電圧値を越えると急激に電流を流し、微小な電流が流れ始める近辺の電圧値で発光が見られた。 次に半導体レーザーについて光を回折させる実験を行った。レーザーを回折格子に通すことで分散され、直進した光と分散された光の距離からレーザーの波長を算出することができ、これより半導体レーザーがGaP(Zn−O)またはAlGaAsで構成されているという予測が出来た。 次にレーザー光を二枚の偏光板によって偏光させ、どのような向きのときにどれだけ光が通っているかを、CdS素子を使って測定した。このとき二枚の偏光板を交差(垂直に交わらせ)たときにCdS素子の抵抗値が最大になった。 次にレンズを用いて、ダイオードと半導体レーザーをつかって焦点距離との関係を導く実験を行った。ダイオードの場合は光が広がっていくため、光源からレンズの距離を離していくことで焦点距離も変わっていったが、半導体レーザーの場合は距離が変わっても光は広がらないために焦点の距離も代わることはなかった。 今回の実験でこの二つの性質や特性について理解することが出来た。 ・実験目的 半導体の諸特性を測定・記録し、光の回折、偏光について理解する。 ・実験方法 ・半導体レーザー素子の発振 半導体レーザー素子の印可電圧を0〜3Vとしたときの電流電圧特性、印可電圧に対するCdS素子の抵抗について測定しグラフを作成する。 ・光の回折 レーザー素子の印可電圧を3Vのときの、レーザー光と回折格子の面が垂直になるような回折格子を入れて、回折格子から20cm、40cm程度離れたところに観測される光の形を正確に記録する。
  • レポート 理工学 電気 電子 実験
  • 550 販売中 2006/11/09
  • 閲覧(4,523)
  • 制御工学実験
  • 1.実験目的 2次遅れ系を中心とした動的システムの安定性解析および動特性に関する数値シミュレーションを行う。特に、時間領域の解析を行う。制御対象および閉ループ(PID 制御)系に対する過渡応答の数値計算を通して基本的な制御理論の理解を目的とする。本実験を通して制御工学を中心とした機械工学の専門科目への興味や知識を深め、今後の講義等に生かしていけるようにする。 <中略> 2-2.システムの安定性 システムの動特性を評価するとき、最も重視される特性は、安定性である。機械構造物の場合、安定性が保証されていないものは、暴走や破壊などの危険を伴う。また、ロボットや生産ラインなどで使用される装置では、性能に影響を与える。したがって、あるシステムにおいてその安定性は、最も把握しておかなければならない特性である。制御工学の始まりは回転速度を制御する「ガバナ(調速器)」をいかに安定化するかといった安定化問題からと言われている。制御工学の中でもこのような理由から基本事項となっている。 そのような安定性を評価する指標が定義されている。あるシステムの伝達関数 の分母D(s)(Denominator)および分子N(s)(Numerator)を定義したとき、分母多項式D(s) を0 とする解をシステムの極という。極の配置とシステムの特性には関連がある。 <中略> 6.2.フィードバック制御系 MATLAB およびSIMULINK を用いて、PID 制御による閉ループ系のインディシャル応答変化を調べる。制御対象は、式(1)の伝達関数で記述される機械振動系(m = 2、c = 1、k = 1)とする(init trf.m)。また、PID コントローラC(s) の各ゲインパラメータは以下のように設定し数値計算を行う(pid sim.m)。最後に、計算された結果をファイルに保存する(pid sim.dat)。
  • レポート 理工学 時間応答 古典制御 実験
  • 550 販売中 2006/04/16
  • 閲覧(4,183)
  • 調理化学実験
  •    ほうれん草を塩水で加熱した場合、湯の色が薄い緑色だったが、その他の実験の湯の色は塩水より緑色が濃くなったように感じた。酢水で加熱した時は、塩水で加熱した時と比べて色が悪くなった。  にんじんを重曹水で加熱すると、色が暗くなり甘味も無くなってしまった。みょうばん水では、にんじんの色が薄くなったが、湯は無色で10分間の加熱後の味は美味しくなかった。酢水では、10分後に一番色が薄くなっていた。湯の色もオレンジ色だった。  紫キャベツは塩水で茹でた時、10分後の色が一番濃くなったが、キャベツの歯ごたえが全くなくなった。酢水では、最後は酢の味しか感じなくなり、塩水ほど柔らかくなく、まだ硬さが残っていた。紫キャベツは全ての実験で、加熱後すぐに湯の色が変わった。にんじんのみょうばん水の時のように、湯の色が無色なことは無かった。  カリフラワーを塩水で加熱した場合、7分が一番甘く柔らかかった。10分まで加熱すると塩味が強くなった。重曹水の時では、10分後では湯は白く濁り、じゃがいものような色になった。みょうばん水では、加熱していくに従って段々酸味が強くなり、カリフラワーの味が無くなった。色は最初から最後まで特に変化は見られなかった。水のみで加熱した場合では、最終的に硬さを感じないくらいになり、味はまずかった。
  • レポート 野菜 加熱 変化
  • 550 販売中 2006/06/22
  • 閲覧(6,432)
  • 糖の定性実験
  • 【目的】 試料が、単糖か二糖か多糖、還元糖か非還元糖であるかを、今回は6種類の試料の性質を調べる。また、その結果から未知試料はどの試料の結果と一致するかを調べる。 【原理】 ・ モーリッシュ反応・・・接触面に赤紫色の環が観察される。 ・ フェーリング反応・・・沸騰浴中に加熱すると、亜酸化銅の赤色沈殿を生成する。 ・ バーフォード反応・・・沸騰浴中に加熱すると、単糖の場合には5分以内に亜酸化銅の 赤色沈殿を生じるが、二糖の場合は反応が十分進まない。 ・ セリワノフ反応・・・沸騰浴中で加温すると、3~5分間で淡赤色〜暗赤色を呈し、さら に加熱を続けると暗赤褐色の沈殿を生成する。 ・ オルシン塩化鉄反応・・・五炭糖を含む溶液は青緑色〜青紫色に変化し、やがて暗青色 に濁るのに対し、六炭糖は赤紫色〜褐色を呈する。 ・ ヨウ素−デンプン反応・・・鎖長の長いデンプンは青色、デキストリンは紫〜赤色、マ ルトースは無色を呈する。
  • レポート モーリッシュ反応 バーフォード反応 セリワノフ反応 フェーリング反応
  • 550 販売中 2006/06/28
  • 閲覧(110,933)
  • 血液成分に関する実験
  • 血液成分に関する実験1  <目的> 2匹のラットの血液に含まれる赤血球数、白血球数およびヘモグロビン濃度を測定・比較し、どちらが貧血であるかを予測し、血液成分と病理の関係について学ぶ。 <実験方法> 血球数の測定 ある溶液により希釈した一定量の血液を血球計算盤に採取し顕微鏡下で一定区画中の血球数を測定し、その数より計算して血液1m㎥中の血球数に換算する。 赤血球 操作 血液20㎕を180㎕のハイエム液に入れ10倍希釈し、さらにそれを20㎕取って380㎕のハイエム液に入れ20倍に希釈する。この操作で血液は200倍希釈されたことになる。この希釈血液を被いガラスと血算盤の間に(ニュートン環ができた後
  • レポート 農学 ラット 白血球 赤血球
  • 550 販売中 2007/02/16
  • 閲覧(8,254)
  • 流体実験レポート
  • 1.目的 実験による流体抵抗の測定方法を理解し、さらに実際の測定を通して物体まわりの流れと抵抗が発生する理由を理解する。 2.理論 2.1.抵抗係数 流体力は粘性応力によるものと圧力によるものに分解できる。流体抵抗に関して、粘性応力による摩擦抵抗、また圧力による圧力抵抗、あるいは形状抵抗と呼ばれる。つまり、次式のように表すことが出来る。       流体抵抗=摩擦抵抗+圧力抵抗・・・・(1) ある程度レイノルズ数が高ければ、円柱のような鈍い形状の物体に作用する流体抵抗の場合、一般的に圧力抵抗が支配的で、摩擦抵抗は無視できる。 流体抵抗の大きさは無次元化して抵抗係数Cとして表すことが出来る。抵抗係数の定義を次に示す。 ・・・(2) ここで、ρは流体の密度、Uは一様流の流速、Sは一般に対象とする物体を流れ方向にと投影場合の投影面積である。揚力Lにおいても同様に次式の揚力係数Cで表す。 ・・・(3) 2.2.流体抵抗が生じる理由 流れの中に物体をおくと、その物体には必ず流体抵抗が作用することは経験的に分かっていることであるが、ではなぜ流体抵抗が発生するのかその理由について、実在しない非粘性流
  • 実験 抵抗 測定 流体 比較 考察 試験 方法 理論 理解
  • 全体公開 2009/07/25
  • 閲覧(7,376)
  • 錯視実験のレポート
  • 1,目的  錯視とは、視覚による錯覚であり、対象物の大きさや形が実際とは違って知覚されることである。大きさの錯視の代表的なものに、ミュラー・リヤー錯視がある。ミュラー・リヤー錯視とは、実際には斜線の間の線分の長さは同じだが外向きの斜線に挟まれた場合は、内向きの斜線の場合に比べて長く知覚されるというものである。本実験では、ミュラー・リヤーの錯視図を用い、調整法によって錯視量を測定する。 2,方法 <錯視量の定義>  図?では、物理的にはa=bであるのに知覚的にはa<bと見える。もし、逆に知覚的にa=bと見えるように図を描けば、物理的にはa>bとなるであろう。このときの物理的な線分の長さの差、すなわち、a−b=?の値を錯視量と定義する。 <実験手続き>  本実験では、直接?(=錯視量)の値を読み取ることの出来る錯視図計を用いることにする。  被験者は表面を見ながら、図形の左右を手に持って同じ長さに見えるところまで引き伸ばして調節し、実験者は裏面を見て?の値を測る。明らかに短く見える点から徐々に長くして、同じ長さに見えるところまで調整する上昇系列(A)と、逆に明らかに長く見える点から出発して同じ長さに見えるところまで調整する下降系列(D)とがあり、さらに引き伸ばす方向が右(R)からと左(L)からがある。このAとD、RとLの組み合わせ、すなわちAR,AL,DR,DLの4条件についてランダムな順で格4回、計16試行の測定を行う。なお、A,Dいずれの場合にも各試行ごとに、実験者は調整の出発点が一定にならないようにして被験者に手渡す。被験者には自然な態度で図形を観察し、見えるがままの長さを比較して調整するよう、また調整が行きすぎたと思ったら後戻りを繰り返してもよいことを教示する。2,3回練習を行ってから実験を始める。
  • レポート ミュラーリヤー 錯視 心理学
  • 550 販売中 2005/12/13
  • 閲覧(46,025)
  • タンパク質分離実験
  • タンパク質分離実験 実験日 7月6日 目的 ゲルろ過クロマトグラフィーを行い、ブルーデキストリン、ヘモグロビンと2,4-ジニトロフェニルバリンを分離する。 原理 ゲルろ過クロマトグラフィー : 分子ふるいと呼ばれるもので、タンパク質を分子量の大きさにより分画する方法である。樹脂はできスト欄、アガロース、ポリアクリルアミドなどを適当に3次元に架橋して網目構造を持たせたものである。大きなタンパク質分子はゲルの網目構造の中に入ることはできず、小さな分子はゲル内へ拡散していく。ゆえにタンパク質分子が大きいほどゲル内へ進入できない場合が多く、ゲルの外を流れるので速く移動でき、小さいタンパク質ほど内部へ分散されうる頻度が増すので溶出されるのに時間がかかる。この差を利用して、タンパク質を分子量に応じて分画する。 実験材料 溶出液 : 50mM NaCl, 10mM Tris-HCl (pH7.2) 50ml ブルーデキストリン(5mg/ml)、ヘモグロビン(5mg/ml)、2,4-ジニトロフェニルバリン(0.25mg/ml) 混合液 0.5ml 実験方法 カラムの調整 垂直に立てたカラムに溶出液をカ
  • 理工学 タンパク質分離 ゲルろ過クロマトグラフィー ブルーデキストリン 4-ジニトロフェニルバリン レポート ヘモグロビン 2
  • 550 販売中 2006/12/12
  • 閲覧(5,819)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?