連関資料 :: 実験

資料:323件

  • 錯視実験のレポート
  • 1,目的  錯視とは、視覚による錯覚であり、対象物の大きさや形が実際とは違って知覚されることである。大きさの錯視の代表的なものに、ミュラー・リヤー錯視がある。ミュラー・リヤー錯視とは、実際には斜線の間の線分の長さは同じだが外向きの斜線に挟まれた場合は、内向きの斜線の場合に比べて長く知覚されるというものである。本実験では、ミュラー・リヤーの錯視図を用い、調整法によって錯視量を測定する。 2,方法 <錯視量の定義>  図?では、物理的にはa=bであるのに知覚的にはa<bと見える。もし、逆に知覚的にa=bと見えるように図を描けば、物理的にはa>bとなるであろう。このときの物理的な線分の長さの差、すなわち、a−b=?の値を錯視量と定義する。 <実験手続き>  本実験では、直接?(=錯視量)の値を読み取ることの出来る錯視図計を用いることにする。  被験者は表面を見ながら、図形の左右を手に持って同じ長さに見えるところまで引き伸ばして調節し、実験者は裏面を見て?の値を測る。明らかに短く見える点から徐々に長くして、同じ長さに見えるところまで調整する上昇系列(A)と、逆に明らかに長く見える点から出発して同じ長さに見えるところまで調整する下降系列(D)とがあり、さらに引き伸ばす方向が右(R)からと左(L)からがある。このAとD、RとLの組み合わせ、すなわちAR,AL,DR,DLの4条件についてランダムな順で格4回、計16試行の測定を行う。なお、A,Dいずれの場合にも各試行ごとに、実験者は調整の出発点が一定にならないようにして被験者に手渡す。被験者には自然な態度で図形を観察し、見えるがままの長さを比較して調整するよう、また調整が行きすぎたと思ったら後戻りを繰り返してもよいことを教示する。2,3回練習を行ってから実験を始める。
  • レポート ミュラーリヤー 錯視 心理学
  • 550 販売中 2005/12/13
  • 閲覧(46,010)
  • 油圧制御実験
  • 1.実験の目的 油圧の力を利用して物体の運動を制御する油圧制御は建設機械,自動車,航空機,船舶,超高層ビルの制御装置などで広く使われている重要な技術である.本実験では油圧制御の原理の理解と油圧制御システムの一例として電気・油圧サーボシステムの各構成要素の特性とシステム全体の関係を実験的に把握し,簡単な線形モデルとの特性比較をし,油圧制御システムの要素を深めることを目的としている. 2.実験装置 システム構成は以下の通りである 図2-1 スプール弁サーボモータシステム 実験装置は以下、表2-1を参照されたい 表2-1 実験装置名称 <サーボアクチュエータ> 形式       LMA10-20 動的最大推力   9.81kN 受圧面積     6.28c? ピストンロッド径  35mm 定格ストローク  200mm 機械的ストローク 206mm <油圧源> 形式       07-50 定格使用圧力   20.6Mpa 定格吐出流量   15.4L/min 電動機使用    3相 AC200/220V 50Hz 7.5kW 4P 全閉外扇 起動方式     直入方式 冷却方法     空冷式 作動油タンク容量 60L 使用作動油    一般鉱物系作動油 (ISO VG46 相当) <サーボ増幅器> 形式       CA-741B-E 入力信号数    5(SIG,FB1,FB2,FB3,FB4) 入力電圧範囲   ±10V 出力電流     ±100mA ゲイン調整    プリ,メイン 電源       AC100/200V 50/60Hz <変位増幅パネル> 変位表示機    ディジタル方式 出力電圧     ±10V 3.実験方法 3.1 オープンループ制御実験 オープンループの状態で方形波を入力し,出力応答を測定し,前向き路のゲイン定数を導出する.
  • レポート 理工学 メカトロ 制御 芝浦 追従
  • 550 販売中 2006/02/01
  • 閲覧(2,415)
  • 生体制御実験
  • 1.実験目的 1)ヒトの肘関節まわりの筋が発揮している筋張力を,モデルおよび筋電図を用いて推定する. 2)筋疲労によって,1)の方法で推定した筋張力が,関節角度の違い,筋の違いによって,どのように変化するか考察する. 3)筋疲労によって,筋収縮がどのように変化するかについて,周波数解析を用いて考察する. 2.実験装置 今回の実験装置について、以下にシステム構成図を示す。 図2-1 システム構成図 2.1 実験機器 ・NIHON KOHDEN Ag/AgCl電極 ・生体アンプ Multi Channel Amplifier NIHON KOHDEN  型番:MEG/6108M ・オシロスコープ FOUR CHANNEL DIGITAL STORAGE OSCILLOSCOPE Tektronix 型番:TDS2014 ・ひずみアンプ KYOWA STRAIN AMPLIFER  型番:DPM-711B ・ひずみゲージ ・ポテンショメータ ・WE A/D変換ボード YOKOGAWA 形式:WE400 3.実験方法 1)被験者:2名(右利き) 2)筋電図:腕橈骨筋(BR)と上腕二頭筋(BB),上腕三頭筋(TB) 3)運動課題 ・肘関節角度90度における屈曲および伸展の最大随意収縮(Maximum Voluntary Contraction : MVC). ・30%と50%MVCのトルクレベルで等尺性収縮の肘屈曲課題(疲労するまで) ・それぞれ2種類の肘関節角度(30°,90°,完全伸展位=0°)で行う. 4)実験手順 ・おもりを用い,ひずみゲージ(力センサ)の較正値の計測(calibration) ・角度計のcalibration ・EMG電極を筋腹に装着 ・EMGの確認と生体アンプのcalibration ・肘関節角度90°でMVCを数回計測 ・等尺性収縮の屈曲課題 ・モデルのための形態計測+被験者の身体的特性(身長,体重,年齢など)
  • レポート 医・薬学 筋疲労 筋電図 上腕二頭筋 上腕三頭筋 腕橈骨筋
  • 550 販売中 2006/02/01
  • 閲覧(2,417)
  • モータ制御実験
  • 1.センサ特性実験 1.1 実験目的 各サーボ機構に使用される各センサの特性を調べる. 1.2 実験装置・構成 1.2.1 ACサーボ機構 ・教材用自動制御実習装置 製造会社:TAMAGAWA製 ・入力側DCサーボモータ 製造会社:TAMAGAWA製 型番:3353 E53 性能:30W ・出力側サーボモータ 製造会社:TAMAGAWA製 型番:1983 56E5 性能:30W エンコーダ 1000C/T ・入力SYNCHRO 型番:TS5N2E11 性能:100/110V 50/60Hz ・出力SYNCHRO 型番:TS1132E11 性能:90V 50/60Hz ・ポテンションメータ 型番:CP-2FB 性能:1kΩ ・教材用自動制御実習装置 製造会社:TAMAGAWA製 型番:DIGITAL MULTI MATER 性能:195A 1.2.2 DCサーボ機構 ・テスター 製造会社:Sanwa 型番:N501D ・SERVO AMPLIFIER 製造会社:TAMAGAWA製 型番:AU17N5 ・SERVOBOARD 製造会社:TAMAGAWA製 型番:TA15NE ・SYNCHRO CONTROL TRANSFORMER 製造会社:TAMAGAWA製 型番:TS110N54 ・SYNCHRO TRANSMITER 製造会社:TAMAGAWA製 型番:TS110N50 ・SERVOMOTOR GENERATOR 型番:TS86 ・SERVOMOTOR TACHOGENERATOR 型番:TS157 1.3 実験方法 1.3.1 ACサーボ機構における交流特性実験 測定項目 ・偏差角変位 (角度盤より目測) ・シンクロの交流偏差電圧 (端子:INPUT) 手順 ?EXCVOLTスイッチをOFFにし,GAIN1,GAIN2つまみを反時計回 ?電磁クラッチスイッチをCONST側にしておく. ?発信器側のハンドルをまわし,シンクロの交流電圧を0にする. ?そのときの角度を両方の角度盤から読み,記録する. ?ハンドルをまわしながら,シンクロの交流偏差電圧を測定する.(角度は0[deg]〜30[deg]までは2[deg]刻みとし,30[deg]〜100[deg]までは5[deg]刻みとして測定すること)
  • レポート 理工学 AC DC センサ ブロック線図 発散
  • 550 販売中 2006/02/01
  • 閲覧(2,826)
  • タンパク質分離実験
  • タンパク質分離実験 実験日 7月6日 目的 ゲルろ過クロマトグラフィーを行い、ブルーデキストリン、ヘモグロビンと2,4-ジニトロフェニルバリンを分離する。 原理 ゲルろ過クロマトグラフィー : 分子ふるいと呼ばれるもので、タンパク質を分子量の大きさにより分画する方法である。樹脂はできスト欄、アガロース、ポリアクリルアミドなどを適当に3次元に架橋して網目構造を持たせたものである。大きなタンパク質分子はゲルの網目構造の中に入ることはできず、小さな分子はゲル内へ拡散していく。ゆえにタンパク質分子が大きいほどゲル内へ進入できない場合が多く、ゲルの外を流れるので速く移動でき、小さいタンパク質ほど内部へ分散されうる頻度が増すので溶出されるのに時間がかかる。この差を利用して、タンパク質を分子量に応じて分画する。 実験材料 溶出液 : 50mM NaCl, 10mM Tris-HCl (pH7.2) 50ml ブルーデキストリン(5mg/ml)、ヘモグロビン(5mg/ml)、2,4-ジニトロフェニルバリン(0.25mg/ml) 混合液 0.5ml 実験方法 カラムの調整 垂直に立てたカラムに溶出液をカ
  • 理工学 タンパク質分離 ゲルろ過クロマトグラフィー ブルーデキストリン 4-ジニトロフェニルバリン レポート ヘモグロビン 2
  • 550 販売中 2006/12/12
  • 閲覧(5,814)
  • 立体視実験
  • [問題] 私たちは物体を見る時、図1のように右目と左目で物体の方向が異なる。それは両眼間に約6cmの間隔があることで、物体の方向に眼球が向くため眼球に角度が生じ、それによって左右の目の網膜像にずれが生じるためである。(宮本,2002)そのことを「両眼視差」といい、また、眼球に生じた角度を輻輳角という。
  • レポート 心理学 立体視 両眼視 実体鏡
  • 550 販売中 2006/07/15
  • 閲覧(2,308)
  • 実験レポート表紙
  • 実験表紙用フォーマットです。 もともと「東京電機大学用工学部実験用表紙」として作成しましたが、基本的に工学系実験用に作成してありますので、他のものにも転用が可能だと思います。 記載内容は、実験No.、実験タイトル、実験日、実験場所、学年、グループ、学籍番号、氏名、共同実験者学籍番号、共同実験者氏名、大学名です。
  • レポート表紙 実験 表紙 書式 東京電機大学 電大
  • 550 販売中 2006/07/19
  • 閲覧(8,443)
  • 調理化学実験
  •    ほうれん草を塩水で加熱した場合、湯の色が薄い緑色だったが、その他の実験の湯の色は塩水より緑色が濃くなったように感じた。酢水で加熱した時は、塩水で加熱した時と比べて色が悪くなった。  にんじんを重曹水で加熱すると、色が暗くなり甘味も無くなってしまった。みょうばん水では、にんじんの色が薄くなったが、湯は無色で10分間の加熱後の味は美味しくなかった。酢水では、10分後に一番色が薄くなっていた。湯の色もオレンジ色だった。  紫キャベツは塩水で茹でた時、10分後の色が一番濃くなったが、キャベツの歯ごたえが全くなくなった。酢水では、最後は酢の味しか感じなくなり、塩水ほど柔らかくなく、まだ硬さが残っていた。紫キャベツは全ての実験で、加熱後すぐに湯の色が変わった。にんじんのみょうばん水の時のように、湯の色が無色なことは無かった。  カリフラワーを塩水で加熱した場合、7分が一番甘く柔らかかった。10分まで加熱すると塩味が強くなった。重曹水の時では、10分後では湯は白く濁り、じゃがいものような色になった。みょうばん水では、加熱していくに従って段々酸味が強くなり、カリフラワーの味が無くなった。色は最初から最後まで特に変化は見られなかった。水のみで加熱した場合では、最終的に硬さを感じないくらいになり、味はまずかった。
  • レポート 野菜 加熱 変化
  • 550 販売中 2006/06/22
  • 閲覧(6,424)
  • 糖の定性実験
  • 【目的】 試料が、単糖か二糖か多糖、還元糖か非還元糖であるかを、今回は6種類の試料の性質を調べる。また、その結果から未知試料はどの試料の結果と一致するかを調べる。 【原理】 ・ モーリッシュ反応・・・接触面に赤紫色の環が観察される。 ・ フェーリング反応・・・沸騰浴中に加熱すると、亜酸化銅の赤色沈殿を生成する。 ・ バーフォード反応・・・沸騰浴中に加熱すると、単糖の場合には5分以内に亜酸化銅の 赤色沈殿を生じるが、二糖の場合は反応が十分進まない。 ・ セリワノフ反応・・・沸騰浴中で加温すると、3~5分間で淡赤色〜暗赤色を呈し、さら に加熱を続けると暗赤褐色の沈殿を生成する。 ・ オルシン塩化鉄反応・・・五炭糖を含む溶液は青緑色〜青紫色に変化し、やがて暗青色 に濁るのに対し、六炭糖は赤紫色〜褐色を呈する。 ・ ヨウ素−デンプン反応・・・鎖長の長いデンプンは青色、デキストリンは紫〜赤色、マ ルトースは無色を呈する。
  • レポート モーリッシュ反応 バーフォード反応 セリワノフ反応 フェーリング反応
  • 550 販売中 2006/06/28
  • 閲覧(110,816)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?