連関資料 :: 実験

資料:274件

  • モータ制御実験
  • 1.センサ特性実験 1.1 実験目的 各サーボ機構に使用される各センサの特性を調べる. 1.2 実験装置・構成 1.2.1 ACサーボ機構 ・教材用自動制御実習装置 製造会社:TAMAGAWA製 ・入力側DCサーボモータ 製造会社:TAMAGAWA製 型番:3353 E53 性能:30W ・出力側サーボモータ 製造会社:TAMAGAWA製 型番:1983 56E5 性能:30W エンコーダ 1000C/T ・入力SYNCHRO 型番:TS5N2E11 性能:100/110V 50/60Hz ・出力SYNCHRO 型番:TS1132E11 性能:90V 50/60Hz ・ポテンションメータ 型番:CP-2FB 性能:1kΩ ・教材用自動制御実習装置 製造会社:TAMAGAWA製 型番:DIGITAL MULTI MATER 性能:195A 1.2.2 DCサーボ機構 ・テスター 製造会社:Sanwa 型番:N501D ・SERVO AMPLIFIER 製造会社:TAMAGAWA製 型番:AU17N5 ・SERVOBOARD 製造会社:TAMAGAWA製 型番:TA15NE ・SYNCHRO CONTROL TRANSFORMER 製造会社:TAMAGAWA製 型番:TS110N54 ・SYNCHRO TRANSMITER 製造会社:TAMAGAWA製 型番:TS110N50 ・SERVOMOTOR GENERATOR 型番:TS86 ・SERVOMOTOR TACHOGENERATOR 型番:TS157 1.3 実験方法 1.3.1 ACサーボ機構における交流特性実験 測定項目 ・偏差角変位 (角度盤より目測) ・シンクロの交流偏差電圧 (端子:INPUT) 手順 ?EXCVOLTスイッチをOFFにし,GAIN1,GAIN2つまみを反時計回 ?電磁クラッチスイッチをCONST側にしておく. ?発信器側のハンドルをまわし,シンクロの交流電圧を0にする. ?そのときの角度を両方の角度盤から読み,記録する. ?ハンドルをまわしながら,シンクロの交流偏差電圧を測定する.(角度は0[deg]〜30[deg]までは2[deg]刻みとし,30[deg]〜100[deg]までは5[deg]刻みとして測定すること)
  • レポート 理工学 AC DC センサ ブロック線図 発散
  • 550 販売中 2006/02/01
  • 閲覧(2,827)
  • 半導体レーザーの実験
  • ・概要 発光ダイオードと半導体レーザーでは発光する原理は同じではあるがさまざまな性質の違いがある。今回の実験は半導体の発光素子の特性、性質を調べる実験を行った。 電流電圧特性を調べると、どちらも順方向電圧を加えることによって、ある電圧値を越えると急激に電流を流し、微小な電流が流れ始める近辺の電圧値で発光が見られた。 次に半導体レーザーについて光を回折させる実験を行った。レーザーを回折格子に通すことで分散され、直進した光と分散された光の距離からレーザーの波長を算出することができ、これより半導体レーザーがGaP(Zn−O)またはAlGaAsで構成されているという予測が出来た。 次にレーザー光を二枚の偏光板によって偏光させ、どのような向きのときにどれだけ光が通っているかを、CdS素子を使って測定した。このとき二枚の偏光板を交差(垂直に交わらせ)たときにCdS素子の抵抗値が最大になった。 次にレンズを用いて、ダイオードと半導体レーザーをつかって焦点距離との関係を導く実験を行った。ダイオードの場合は光が広がっていくため、光源からレンズの距離を離していくことで焦点距離も変わっていったが、半導体レーザーの場合は距離が変わっても光は広がらないために焦点の距離も代わることはなかった。 今回の実験でこの二つの性質や特性について理解することが出来た。 ・実験目的 半導体の諸特性を測定・記録し、光の回折、偏光について理解する。 ・実験方法 ・半導体レーザー素子の発振 半導体レーザー素子の印可電圧を0〜3Vとしたときの電流電圧特性、印可電圧に対するCdS素子の抵抗について測定しグラフを作成する。 ・光の回折 レーザー素子の印可電圧を3Vのときの、レーザー光と回折格子の面が垂直になるような回折格子を入れて、回折格子から20cm、40cm程度離れたところに観測される光の形を正確に記録する。
  • レポート 理工学 電気 電子 実験
  • 550 販売中 2006/11/09
  • 閲覧(4,524)
  • デジタル回路実験
  • 1.目的 デジタル回路の基本的動作を理解する。回路の基本的動作を表現する方法と記号、真理値表、タイムチャートについて学ぶ。NAND, Flip, Flop, Counter, Adder回路の動作を実験的に確認し報告にまとめる。 2.理論 2.1デジタル量  アナログに対して、デジタルは最小の単位が決まっていて、最小単位の整数倍でものの量を表す。デジタル電子回路においては回路の電位の状態を二つの状態、電位の高い、低い(あるいはゼロ)で表すので、数学的には2進法で表される。またその組み合わせの状態はブール代数と呼ばれる論理数学で表現される。 2.3フリップフロップ回路  Flip Flop(以下F.F.と略記する)は1ビットの情報を記憶する素子でJとKの2入力とクロック入力端子Cpを持つものをJ-K F.F.と言う。図1にプリセット入力端子PRに“0”レベルを加えるとF.F.の出力端子Qはそれ以前のF.F.の状態に無関係に“1”になり、クリア入力端子CLRを“0”レベルにすると出力Qはそれ以前のF.F.の状態に無関係に“0”となる。PR、CLRともに“0”レベルにするとQ、 ともに“1”となり、PR、CLRが“1”にもどるとQ、 の状態はどちらかが“1”になるか定まらないので、PR、CLRともに“0”にする事は禁止されている。これらの状態を表2の真理値表と図2のタイムチャートに示す。タイムチャートは横に時間経過を表し、縦にそれぞれの位置の電圧でON、OFFの状態を表し、動作のタイミングを真理値表より明確に表す事が出来る。 2.4カウンター  カウンタはパルスの数を計数する回路でデジタル回路に欠く事が出来ない重要なものの一つである。回路構成はF.F.を基礎としてF.F.一回路につき2進数1桁の計数が行える。このことからF.F.によるカウンタをバイナリイ・カウンタという。
  • レポート 理工学 理論回路 NAND Flop Counter Adder
  • 550 販売中 2005/07/25
  • 閲覧(55,604)
  • ヒューマニクス系実験
  • ウシ血清からのIgG抗体の精製の目的・手順 目的 Protein G sepharoseを用いたアフィニティークロマトグラフィーで、ウシ血清に含まれるIgG抗体を精製する。 手順 ?Protein G sepharose4 Fast FrowをPoly prepカラムに500μl加える。さらにTBSを10ml加え、室温で5分間静置【カラムの平衡化】 ?ウシ血清1mlとTBS1mlを2mlチューブで混ぜる ?ウシ血清サンプルをカラムに加え、シーソーシェーカーで15分間振とうしながら反応させる ?壁を洗うようにカラムにTBSを10ml加え素通し、下部のふたをして、再びカラムにTBS10ml加える。 ?上部、下部のふたを外してバッファーをビーカーに捨てる。上部、下部のふたを蒸留水でよく洗浄 ?下部のふたをして、再びカラムにTBS10mlを加えて、??を再び行う。この洗浄を全部で3回繰り返す。 ?カラムにTBS30mlを素通しする。キムワイプを下部につけ、毛細現象を利用しながら余分なバッファーを吸い取る。 ?【溶出】0.1M Glycine Buffer(pH2.2)50μlを加え、指で軽く混ぜた後、室温で5分間静置。 ?【Protein G sepharoseの除去】ピペットマンでゲルを吸い上げないように溶出液全量を吸い上げる。0.22umに全量を移して、チビタンRde30秒間遠心する。 ??の溶出液に1MTrisHCl(pH8.8)を3.8μl入れ中和 試薬類 □Tris-buffered saline,TBS(20mM Tris-HCl(pH7.5),137mM NaCl)溶液 200ml □Protein G sepharose 4 Fast Flow(20倍希釈)1.2ml□ウシ血清2.2ml □0.1M Glycine Buffer(pH2.2)120μl□1M Tris HCl(pH8.8)15μl 考察 ?血清、血漿の違いとは、血清は血液が凝固して血球成分と淡黄色の透明な液体成分に分かれたときの液体成分のこと。血清には血液凝固にかかわる凝固因子が失われている。  逆に血漿には血液凝固に必要な凝固因子が含まれている。 ?Fc領域とは、抗原との結合活性を持たないばかりか、放置しておくと簡単に結晶化する性質をを持っている領域。免疫系の他の細胞表面に存在するFc受容体と反応し、細胞を活性化、あるいは機能を抑制したり、Fc部分それ自身に捕体成分を活性化するはたらきがあり、抗体の生物活性を発揮する部位のことである。
  • レポート 理工学 免疫 IgG抗体 SDS プラスミドDNA 制限酵素
  • 550 販売中 2006/06/28
  • 閲覧(2,211)
  • 調理化学実験
  •    ほうれん草を塩水で加熱した場合、湯の色が薄い緑色だったが、その他の実験の湯の色は塩水より緑色が濃くなったように感じた。酢水で加熱した時は、塩水で加熱した時と比べて色が悪くなった。  にんじんを重曹水で加熱すると、色が暗くなり甘味も無くなってしまった。みょうばん水では、にんじんの色が薄くなったが、湯は無色で10分間の加熱後の味は美味しくなかった。酢水では、10分後に一番色が薄くなっていた。湯の色もオレンジ色だった。  紫キャベツは塩水で茹でた時、10分後の色が一番濃くなったが、キャベツの歯ごたえが全くなくなった。酢水では、最後は酢の味しか感じなくなり、塩水ほど柔らかくなく、まだ硬さが残っていた。紫キャベツは全ての実験で、加熱後すぐに湯の色が変わった。にんじんのみょうばん水の時のように、湯の色が無色なことは無かった。  カリフラワーを塩水で加熱した場合、7分が一番甘く柔らかかった。10分まで加熱すると塩味が強くなった。重曹水の時では、10分後では湯は白く濁り、じゃがいものような色になった。みょうばん水では、加熱していくに従って段々酸味が強くなり、カリフラワーの味が無くなった。色は最初から最後まで特に変化は見られなかった。水のみで加熱した場合では、最終的に硬さを感じないくらいになり、味はまずかった。
  • レポート 野菜 加熱 変化
  • 550 販売中 2006/06/22
  • 閲覧(6,436)
  • 微生物実験
  • 今実験では、カビ(A.oryzae NBRC 30113)、酵母(S.cerevisiae NBRC 0304)、枯草菌(B.subtilis NBRC 3009)、大腸菌(E.coli NBRC 3301)の4つの菌を、自作の倍地に植菌、培養し、肉眼観察、顕微鏡による観察、菌数計算板による生菌数の測定、グラム染色を行い、得られた結果から、菌の持つ性質を調査し、菌を分類した。 序論 ●微生物とは 実験方法 ●綿栓の作成 ●培地の作成 ●微生物の植菌 ●微生物の培養 観察・結果 ●カビの観察 ●酵母の観察 ●枯草菌、大腸菌の観察 ] ●グラム染色 考察 ●カビの観察について ●酵母の観察について ●菌数計算板による全菌数の測定 ●枯草菌の観察について ●大腸菌の観察について    参考文献
  • 酵母 大腸菌 微生物実験 カビ 枯草菌 グラム染色
  • 550 販売中 2010/04/16
  • 閲覧(6,670)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?