日本最大のレポートサイト HAPPYCAMPUS

検索オプション
  • 私のホーム
  • 私の資料
  • 私のMEMO
  • 資料広場
  • アップロード

連関資料 :: 数学とは

資料:214件

  • スタートアップ理系数学
  • 数学ⅢCは難しいというイメージが流れている一方で、多くの公立高校では高三のごく短い期間で数学ⅢCの範囲を終わらせてしまいます。数学ⅢCの範囲が専ら計算問題であることが速習を可能にしているようです。ただ、これは数学ⅡBの知識が前提となっています。単なる計算であると軽視し、基礎をおろそかにして公式を丸暗記すると、とても太刀打ちできません。最初に関数の基本的事項について確認し、教科書ではほとんど扱われない、微分方程式や関数方程式に触れつつ、微分法についての予習をします。このテキストでこれから数学ⅢCを学ぶ高校生の橋渡しができれば、と願っています。
  • 数学 大学受験 高校生 微分 積分 解析学 微分方程式 プリント
  • 550 販売中 2010/01/20
  • 閲覧(3,286)
  • 近世数学史談を読んで
  • 近世数学史談を読んで 読み終わってまず感じたことは、やはり著名な数学者たちは数学者なるべくしてこの世に生まれたのだなという事である。彼等が証明、研究した数々の功績を数式で目の当たりにしてもほとんど理解できない。まだ大学の基礎数学を始めたばかりとはいえ、その断片ですら捉えることができない自分の数学力の低さを認識させられた。彼らの研究対象である整数論、楕円函数論、積分論、無限級数の和、一般次代数方程式の解の存在等々は名前を耳にするだけで難しいことがわかる。私など一生考えもしないようなことに彼らは私より若くして着想し、研究し、まったく違う道を歩んでいったのである。 さて、ここでこの史談中に登場する数学者たち個別の感想を述べようと思う。特に、本文中で印象に残ったガウス、アーベル、ヤコービ(いずれもドイツ人だということに驚いた。)について述べることにする。 ――――ガウスは閑静なる天才とでも言えばいいのか、本文中では最も優れた頭脳と研究成果を持っていたかのように感ぜられた。しかし、その完璧主義さゆえ、またその多忙さゆえに発表が少なかったのが筆者同様残念でならない。彼の研究した整数論、楕円函数論は
  • レポート 数学 ヤコービ アーベル ガウス
  • 550 販売中 2006/11/27
  • 閲覧(1,788)
  • 算数 数学 円周率について
  • 円周率について まず、円周率とは円の直径とその「円周の長さ」の比のことである。つまり、円周率がおよそ3、14であるということは、円の直径を1とするとき、円周の長さはその3、14倍くらいであることを意味し~ また、円周率は無限少数で表される定数で、3、141592…となる。これは、円周率が無限数(小数点以下の数字が規則なく無限に続く無限少数~ 無限に続くため、3、141592…の円周率を記号の「π」で表す。このπという記号は、1706年にウィリアム・ジョーンズなる人物が、初めて用~ 私たちは、小学校で~
  • 数学 方法 算数 数学者ルドルフ 1706年 ウィリアム・ジョーンズ 無限小数 π 円周率
  • 550 販売中 2009/06/03
  • 閲覧(2,376)
  • 数学 学習指導案
  • 数学 学習指導案 2006年 月 日 第5校時 第2学年  1組 H.R.教室 授業者  1 単元名  連立方程式 代入法 2 指導計画  1. 正弦、余弦、正接の関係 2. 三角比の相互関係 3. 正弦定理,余弦定理 4. 図形の計量
  • レポート 教育学 教育 数学 指導案 佛大
  • 660 販売中 2006/06/26
  • 閲覧(4,440)
  • 数学科における関心・意欲
  • 1.関心・意欲が高まるとはどういうことか。 ?自分で一応解決しようとする。 ・自力解決と呼ばれるものであり、数学の問題が与えられたとき、とにかく自分自身で問題を解決しようという姿勢がみられることである。 ?ある解き方が見つかったら、他にも解き方がないだろうか、もっと「うまい」やり方はないだろうかと考えようとする。 ・数学の答えは1つであり、その解き方も1つである考えている教師もまだ意外と多い。数学に対する態度が生徒の関心・意欲を高くするも低くするも教師次第である。 ?なぜかを追求しようとする。 ・ある事柄が成り立つとか、あることが分かったというとき、なぜだろうという疑問をもったり、その「なぜ」という問いを推し進めてみたりすることである。 ?問題解決後そこから何か新しい問題がつくれないだろうかと考えてみようする。
  • レポート 教育学 数学科指導 数学に対する関心 数学に対する意欲
  • 550 販売中 2006/03/17
  • 閲覧(2,277)
  • 数学的な考え方と算数科
  • ? 数学的な考え方とはどんなものか。  戦前は数学的な思考力を育成するという意味を「数理思想」の開発という言葉で表現していた。戦後は昭和33年の指導要領改訂以来、数学的な考え方が重視されるようになってきた。その大きな理由として科学技術の進歩により、新しい事態に創造的に対応できる人間の育成の必要性が昭和30年代以降年々増しているからである。算数・数学科を通して創造的な活動が自主的にできる能力・態度を子供に身につけさせようというのである。ところで重視されてきている数学的な考え方とは何か。個人によっていろいろな考え方があるが、一般的に言って算数(数学)で指導される基礎的な概念や原理、知識、技能、あるいはそれらを操作する推論を含んだ一つの合目的的な活動が自分の活動の全体としてできることを指したものである。
  • レポート 教育学 数学教育 算数教育 数学的考え方
  • 550 販売中 2006/01/14
  • 閲覧(2,351)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?