連関資料 :: 半導体

資料:15件

  • パワー半導体デバイスの電圧・電流特性
  • ■ダイオード p n 2 タイプのスイッチ、すなわち主電極間に加わる電圧の極性のみによってその導通、非導通が決まるデバイ スである。パワーエレクトロニクスで使用されるダイオードは、電力用という以外は基本的には電子回路で使用するものと同じである。しかし、そのほとんどは整流を目的として用いられるもので、正しくは整流ダイオードと呼ぶべきものであるが、単にダイオードと呼ぶことが多い。以下の図1 にダイオードの図記号を示す。 ダイオードはp 側に正、n 側に負の電圧(順方向電圧)を加えると、ダイオードはオン状態となり電流が流れる。順方向の電流は、印可電圧に対して急激に増加する。逆にn 側に正、p 側に負の電圧(逆方向電圧)を加えると、ごく小さい漏れ電流しか流れない。 しかし、さらに逆方向電圧を高くしていくと、ある電圧から急激に大きな電流が流れる。この電圧を逆降伏電圧と呼ぶ。この電圧より少し低い値に定められる定格電圧以 下で使う必要がある。以下の図2 にダイオードの電圧電流特性を示す。 図2:ダイオードの電圧電流特性 ■サイリスタ サイリスタは、pn 接合を3 つ以上持つデバイスの総称である。代表的なものは、pnpn4層構造で3 端子を持つデバイスで、その記号を図3 に示す。サイリスタはオン機能可制御タイプのスイッチ、すなわち、オフ状態からオン状態への移行(ターンオン)は制御できるが、オン状態からオフ状態への移行(ターンオフ)は主回路状態によって支配されるデバイスである。基本的な電圧電流特性は図4 に示すように、アノード・カソード間に順方向の電圧を加えてもゲートの電流を流さなければ阻止状態である。逆方向はダイオードと同じ特性である。ゲート電流を与えない状態で、順方向に加える電圧を増加していき、電圧が限界を超えるとデバイスはターンオンする。これをブレークオーバという。ゲート電流を増していくに従って、オフからオンに移る電圧が低下していく。 図4:サイリスタの電圧電流特性
  • レポート 理工学 ダイオード MOSFET サイリスタ IGBT
  • 550 販売中 2005/10/31
  • 閲覧(3,736)
  • グラフィクス表示と半導体内部状態描写への適用
  • 第1章  序論  MOSトランジスタは、集積回路産業の中で重要な役割を果たしている。  MOSトランジスタの歴史は古く、バイポーラトランジスタより前に発明されている。実際、電界効果トランジスタの基本原理はJ.E.Lilienfeldによって1930年に考案され、現在のMOSトランジスタの構造はO.Heilによって1935年に考案されている。しかしながら材料の問題により実用化できなかった。この間、バイポーラトランジスタが発明され、MOS構造は長い間注目されなかった。  材料の問題が解決し、MOSトランジスタが実用化に至ったのは1960年代に入ってからのことである。初期は、nチャネルもしくはpチャネル一種類のトランジスタで構成された回路が主流であった。その後、nチャネルとpチャネルのMOSトランジスタを同時に搭載するCMOS(Complementary MOS)構成の回路が使われ始めた。CMOS回路は低消費電力化に有効である。CMOS回路は、製造工程が複雑であるためあまり利用されなかったが、製造技術の進歩により問題が解決され、現在では主としてCMOS回路が使われている。  最近ではLSIの集積度が年々向上しているため、LSI設計技術者は大規模回路の消費電力をいかに下げるかという問題に直面するようになってきた。近年のLSIシステム設計においてCOMS回路技術が重要となってきている。  MOSトランジスタの電気的動作を研究するためにMOSトランジスタのシミュレーションが広く行なわれているが、その結果を詳細に解析するためには、シミュレーション結果の可視化が必要である。  本研究では、シミュレーション結果をグラフィック表示するシステムを構築し、MOSトランジスタの実際のシミュレーション結果を表示し、MOSトランジスタの動作解析を行なった。
  • 論文 理工学 MOSトランジスタ 等高線 AVS
  • 880 販売中 2006/02/06
  • 閲覧(1,123)
  • 酸化物半導体型光触媒による有機色素の分解
  • 実験レポート 酸化物半導体型光触媒による有機色素の分解 1.目的  光触媒は光照射下で反応を促進させる物質である。今回の実験では代表的な光触媒であるTiO2用いてメチレンブルーを分解し、吸光光度測定により光触媒活性を評価し、光触媒についての知見を得る。 2.理論 2.1光触媒反応の原理 二酸化チタンのバンド構造は、チタンの3d軌道からなる伝導帯と、酸素の2p軌道からなる価電子帯により形成されている。伝導帯の下端と価電子帯の上端のエネルギー差をバンドギャップといい、そのバンドギャップ以上のエネルギーを有する光を照射すると、価電子帯から伝導帯に電子が励起され、伝導帯には電子が、価電子帯には正孔がそれぞれ生じ、光触媒反応が起こる。 2.2 Lanbert-Beerの法則  色素の濃度がcである溶液の厚さlを通過する間に、光の強度が入射光I0から透過光Iまで減衰したとき、次の関係が成り立つ。 (1)  ここで、Aは吸光度といい、A = log (I0 / I)で定義される。εはモル吸光係数という物質定数である。 (1)式は色素以外の溶質による吸収や溶媒による吸収、セルによる吸収などを考慮してい
  • 酸化物半導体型光触媒 光触媒 吸光光度測定 二酸化チタン バンド構造 Lanbert-Beerの法則 酸化チタンの製造法 実験 理工学 Beer-Lambert law
  • 550 販売中 2008/10/05
  • 閲覧(3,031)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?