日本最大のレポートサイト HAPPYCAMPUS

検索オプション
  • 私のホーム
  • 私の資料
  • 私のMEMO
  • 資料広場
  • アップロード

資料:28件

  • 2-6ハミルトニアン
  • ハミルトニアン 独立変数の変換 ラグランジアンは一般化座標 と一般化速度 の関数であった。 しかし、ここからは を使うのをやめて、代わりに一般化運動量 を使った体系に移行したい。 それには次のような理由がある。 (1) ラグランジュ方程式は時間の微分方程式
  • 全体公開 2007/12/26
  • 閲覧(2,720)
  • 6-1ラグランジュの未定乗数法
  • ラグランジュの未定乗数法 長い間、難しいものだと思い込んでいた・・・。 基本の確認 多変数関数 f ( x, y, z ) が極値を取る条件を求めたいとする。 関数 f の微分は、 であるが、どんな微小変化 ( dx, dy, dz ) に対してもこれが0
  • 全体公開 2007/12/26
  • 閲覧(4,722)
  • 2-7ポアッソン括弧式
  • ポアッソン括弧式 量子力学でこれを応用する 括弧式の導入 ハミルトニアンを使う利点がどういうところにあるかという部分を説明するために、ちょっと便利な表現を導入することにしよう。 まず、ある物理量 X が位置 と運動量 と時間 t の関数となっているとする
  • 全体公開 2007/12/26
  • 閲覧(1,659)
  • 慣性モーメントテンソル
  • 慣性モーメントテンソル 回転を立体的に表す手法。 動機と準備 力学のページでは回転軸から r だけ離れた位置にある質点の慣性モーメント I が と表せる 理由を説明 した。 多数の質点が集まっている場合にはそれら全ての和を取ればいいし、連続したかたまりにつ
  • 全体公開 2007/12/26
  • 閲覧(4,098)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?