5-2生成演算子と消滅演算子

全体公開
ダウンロード pdfダウンロード
ページ数11
閲覧数3,564
ダウンロード数16
履歴確認

    ファイル内検索

    資料紹介

    生成演算子と消滅演算子
    交換関係こそが全て。 もちろん私の本心ではないが。
    前置き
     以前、粒子性を表すのに調和振動子の論理が応用できそうだという話をした。 そのための準備として調和振動子についての理論構造をもっと詳しく調べておこう。 これが「場の量子論」の基礎になる。
     積分記号を書くのは面倒なので、ベクトル記法を中心に書き進めようと思う。 もちろん、ここでの議論は全て波動関数を使って書き直すことも出来る。 話の流れによっては |n> を関数と呼んだりベクトルと呼んだりするが、どちらも本質は同じだということを理解した上で許してもらいたい。
    またディラックなのか!
     以前にやったのとは違う方法で調和振動子の問題を解いてやる。 この方法を編み出して場の理論のきっかけを生んだのは、あの天才ディラックだ。
     時間に依存しないシュレーディンガー方程式をベクトルで書くと
    である。 ただし、ハミルトニアン は、
    である。 天才の動機というのは良く分からないのだが、この形式を見て因数分解をしてやろうと閃いたわけだ。
     係数の括り出し方に少し細工がしてあるが、理由はそのうちに分かる。 ここで、
    という2通りの演算子を定義してやる。 2通りとは言っても、これらは互いにエルミート共役の関係にあるので、一方を定義すればもう片方は自然に定義されるわけだ。 この2つが単なる複素共役に見えてしまって、なぜエルミート共役であるのかが分からないという人は、次のような理解が欠けているかも知れない。 普段あまり書かれないことではあるが、 x や p というのはエルミート演算子であって、
    であることを思い出してもらえば合点が行くのではないだろうか。 ついでに や はエルミート演算子ではないことを注意しておこう。
       これらを使えばハミルトニアン は
    のようにシンプルに表せる・・・はずだった。 いかにもそんなことが出来そうな気がするわけだが、そう甘くはない。 演算子は掛ける順序によって計算結果が変わるのだった。 その辺りに気をつけて、改めて を計算してやると、
    となる。 だから を や で表したければ、
    とするべきだったわけだ。 何を期待してこんな事をしてきたのか分からないが、式を単純化するという目的のためだけにやったのだとしたら、何となく失敗に終わったようにも思える。 ・・・・。 その判断はまだ早い。
    交換関係
     新しく導入した2つの演算子には面白い性質がある。 交換関係を調べてやると、
    となる。 結果がやたらときれいになるのは、そうなるように と の係数を調整したためだ。 先ほど言っていた「細工」というのはこのことで、これらの演算子が無次元量になるようにしておいたのだった。
     この関係を前提として次のようなことを考える。 まず、
    を一つの演算子と見てやる。 そして、
    となるような方程式を作る。 演算子 を作用させると、その固有値が n として出てくるような関数 |n> を探すわけだ。 ところで、
    であるから、 は明らかにエルミート演算子だ。 エルミート演算子の固有値は必ず実数になるのだった。 つまり、n は実数である。
     我々は以前に調和振動子の問題を解いたので、勘のいい読者はここで n という記号を使っている意味に気付いてしまったかも知れない。 そういう人は、今は知らない振りをしていて欲しい。 n が0以上の整数でなければならないということも、関数 |n> が具体的にどんな形になるのかということも、今の議論ではまるで知らなくていいのである。

    資料の原本内容( テキストデータ全体をみる )

    生成演算子と消滅演算子
    交換関係こそが全て。 もちろん私の本心ではないが。
    前置き
     以前、粒子性を表すのに調和振動子の論理が応用できそうだという話をした。 そのための準備として調和振動子についての理論構造をもっと詳しく調べておこう。 これが「場の量子論」の基礎になる。
     積分記号を書くのは面倒なので、ベクトル記法を中心に書き進めようと思う。 もちろん、ここでの議論は全て波動関数を使って書き直すことも出来る。 話の流れによっては |n> を関数と呼んだりベクトルと呼んだりするが、どちらも本質は同じだということを理解した上で許してもらいたい。
    またディラックなのか!
     以前にやったのとは違う方法で調和振動子の問題を解いてやる。 この方法を編み出して場の理論のきっかけを生んだのは、あの天才ディラックだ。
     時間に依存しないシュレーディンガー方程式をベクトルで書くと
    である。 ただし、ハミルトニアン は、
    である。 天才の動機というのは良く分からないのだが、この形式を見て因数分解をしてやろうと閃いたわけだ。
     係数の括り出し方に少し細工がしてあるが、理由はそのうちに分かる。 ここで..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。