3-6スピノル2(形式重視)

全体公開
ダウンロード pdfダウンロード
ページ数12
閲覧数479
ダウンロード数11
履歴確認

    ファイル内検索

    タグ

    資料紹介

    スピノルⅡ(形式重視)
    形式重視とは言いながら、この回でイメージを完成させる。
    回転の別形式を探る
     前回のスピノルの説明では具体的イメージを重視して、波動関数を経由する方法を取った。 しかし数学寄りの別の説明もできることを示しておこう。 具体的なイメージも大事だが、理論の拡張に備えて簡潔な形式で表し直しておくことも大事である。
     まず、パウリ行列を使った次のような量を定義する。
     この w は行列であり、場所の関数になっている。 この量が何を意味するのかは問題にはしない。 これはただの足掛かりだ。 x 系とは別の座標系 x' にいる人が同じ手続きでこの量を計算すれば、次のようなものになるだろう。
     この w の成分を具体的に書いてやると、
    となっており、エルミート行列になっていることが分かる。 まぁわざわざ計算するまでもなく、エルミート行列の和はエルミートなので当然ではある。 この行列 w には他にも面白い性質があって、行列式を計算してやると、
    となっている。 またもう一つあって、w を2乗してやると
    となっている。
     さて、これからやろうとしていることを予め明かしておくと・・・、回転行列 R を使わない方法で空間の回転を表現するような何か抜け道的な方法がないかと探ろうとしているのである。
     空間を回転させるときには r の値が変化しないのだった。 よって r が変化しないような変換を考えてやればいいだろう。 先に挙げた w の性質を使うと、次のような w の変換則を導入すれば、変換後も r2 の値が一定に保たれている事が分かる。
     ここで P は任意の2次の正則行列である。 なぜこれで r の値が保たれるかと言うと、
    となるし、
    となるからだ。
     さて、P は任意の正則行列だと言ったが、 w がエルミート行列である事を考慮すると P にはもう少し厳しい条件が付いてくるのである。 というのは、(1)式の両辺のエルミート共役を取ると、
    となる。 これは結局(1)式と同じ変換を意味しているのであって、 P† = P-1 だということになる。 つまり P はユニタリ行列だということだ。
     ところがここまでの議論には「大きな嘘とゴマカシ」があるのである。 いかにも(1)式が r の値を保存する一般的な変換則であるかのように説明してきたが、実はそうではない。 r の値が保存するような座標変換と言えば、回転の他に鏡像変換がある。 しかし、(1)式の形では鏡像変換を実現するような P は存在し得ないのである。 その証明は今の本質ではないから気になる人には後で自分で確認してもらうことにしよう。
     こうなると(1)式が本当に全ての回転変換を含んでいるのかどうかについても強い疑いが湧くことだろう。 しかしその点は問題ない。 それについては後でちゃんと確認することを約束しよう。 今は「この計算の目的自体に嘘がある」ことを頭の片隅に置いたままでしばらく騙されたふりをして先へ進んでもらいたい。
    回転行列との関係
     ところで初めの方で x 系と x' 系での w の定義を書いておいたが、それらを(1)式に代入してみよう。
     こうして w はどこかへ行ってしまった。 前にも言ったように、w は論理の助けとして利用したに過ぎない。
     さらに x 系と x' 系が回転変換によって結ばれているのだと強引に仮定しよう。 つまり x' = R x という関係が成り立っているということであり、ちゃんと成分で書けば、
    だということだ。 これを(2)式に

    資料の原本内容( テキストデータ全体をみる )

    スピノルⅡ(形式重視)
    形式重視とは言いながら、この回でイメージを完成させる。
    回転の別形式を探る
     前回のスピノルの説明では具体的イメージを重視して、波動関数を経由する方法を取った。 しかし数学寄りの別の説明もできることを示しておこう。 具体的なイメージも大事だが、理論の拡張に備えて簡潔な形式で表し直しておくことも大事である。
     まず、パウリ行列を使った次のような量を定義する。
     この w は行列であり、場所の関数になっている。 この量が何を意味するのかは問題にはしない。 これはただの足掛かりだ。 x 系とは別の座標系 x' にいる人が同じ手続きでこの量を計算すれば、次のようなものになるだろう。
     この w の成分を具体的に書いてやると、
    となっており、エルミート行列になっていることが分かる。 まぁわざわざ計算するまでもなく、エルミート行列の和はエルミートなので当然ではある。 この行列 w には他にも面白い性質があって、行列式を計算してやると、
    となっている。 またもう一つあって、w を2乗してやると
    となっている。
     さて、これからやろうとしていることを予め明かしてお..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。