3-2量子数の意味

全体公開
ダウンロード pdfダウンロード
ページ数8
閲覧数1,936
ダウンロード数32
履歴確認

    ファイル内検索

    資料紹介

    量子数の意味
    やはり世界はそれほど単純ではないよな。
    磁気量子数
     今回のテーマは、以前に「 原子の構造 」で計算した波動関数の中からどうやって角運動量についての情報を取り出すかということである。 そのために演算子を極座標で書き直しておく方がやり易い。 例えば Lz は、
    と計算できる。 つまり波動関数 を変数 で微分して、外に飛び出してきた数値に -i を掛ければそれが角運動量の z 軸成分を表すのだろうということになる。 実際に当てはめて計算してみよう。 前に求めた水素原子の波動関数 は次のような形をしていた。
     この内で を含むのは、 の部分だけであったから、他の部分は今の計算では定数みたいなものである。 それを A とでも書いておこう。
     これに Lz を作用させると、
    が成り立つ。 つまり、原子核の周りを巡る電子が持つ角運動量の z 成分はいつでも の整数倍の値 m しか取り得ないことが分かる! しかもその整数 m というのは「磁気量子数」だというのだ。
     m がなぜ「磁気量子数」と呼ばれているのか、これで分かっただろうか。 分からなければ前回の復習を思い出そう。 磁気モーメントは角運動量と比例関係にあるのだった。
     「電子の質量」と「磁気量子数」は両方とも m を使っていて区別が付かないので、電子の質量の方を me としてある。  このように磁気モーメント M の z 成分は磁気量子数 m と比例関係にあるわけだ。 その係数
    を「ボーア磁子」と呼ぶ。 ミクロの世界で電子が作り出す磁気モーメントは必ずこのボーア磁子の整数倍になっているというので、特別な数字なのである。
     しかし現実には実測値は色々な影響でこの値からずれることがある。 それでも実測値をボーア磁子の何倍かというやり方で表しておけば、理論値との差が分かり易くてとても便利ではないか。
     ちなみに、電子以外の粒子であっても同じように磁気モーメントを持つわけで、例えば陽子も原子核内で角運動量を持っている。 その時の磁気モーメントは「核磁子」という単位で表す事になる。 定義はボーア磁子と同じであるが、分母には電子より遥かに大きい質量が入るので、その分だけ小さな値になる。 だから日常の現象では電子の作る磁気の方だけが特に目立っているわけだ。
    測定の方向
     こんな面白い結果が出てくると、z 成分だけでなく、他の方向の成分についてもどうなっているのか知りたくなってくる。 途中の計算は面倒なので読者にお任せするが、
    という結果になる。 この複雑さを見れば、先ほどのように簡単には行かないことがすぐ分かるだろう。 これを作用させると波動関数自体の形が大きく変化を受けてしまい、 Lz について計算した時のように欲しい値だけが外に飛び出してくるということがない。 つまり、以前に求めた原子の波動関数は、Lz についての固有関数にはなっていたが、 Lx や Ly についての固有関数にはなっていないということである。
     このことは非常に不自然に思えるかも知れない。 原子の波動関数を求めた時に使ったポテンシャル V ( r ) は球対称なのだった。 なぜ z 軸についてだけ磁気量子数のようなものが定まって、他の軸にはそういうものがないのだろう。 Lx と Ly は非常に似た形の演算子になっているが、 Lz だけが他と違うのはなぜだろうか。
     それはこの問題を解くときに極座標を使ったからである。 極座標というのは z 軸を特別な方向として扱う座標系だからこういう不平等が起こるのである。

    資料の原本内容( テキストデータ全体をみる )

    量子数の意味
    やはり世界はそれほど単純ではないよな。
    磁気量子数
     今回のテーマは、以前に「 原子の構造 」で計算した波動関数の中からどうやって角運動量についての情報を取り出すかということである。 そのために演算子を極座標で書き直しておく方がやり易い。 例えば Lz は、
    と計算できる。 つまり波動関数 を変数 で微分して、外に飛び出してきた数値に -i を掛ければそれが角運動量の z 軸成分を表すのだろうということになる。 実際に当てはめて計算してみよう。 前に求めた水素原子の波動関数 は次のような形をしていた。
     この内で を含むのは、 の部分だけであったから、他の部分は今の計算では定数みたいなものである。 それを A とでも書いておこう。
     これに Lz を作用させると、
    が成り立つ。 つまり、原子核の周りを巡る電子が持つ角運動量の z 成分はいつでも の整数倍の値 m しか取り得ないことが分かる! しかもその整数 m というのは「磁気量子数」だというのだ。
     m がなぜ「磁気量子数」と呼ばれているのか、これで分かっただろうか。 分からなければ前回の復習を思い出そう。 ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。