2-10遷移確率

全体公開
ダウンロード pdfダウンロード
ページ数10
閲覧数1,636
ダウンロード数14
履歴確認

    ファイル内検索

    タグ

    資料紹介

    遷移確率
    光電効果は光の粒子説の証拠とはならない?
    時間変化を含む摂動論
     今回は、ポテンシャルが時間的に変化する場合についても摂動論を使って解いてみよう。 これは単なる練習問題ではなくて、変動する電場の中に原子を置いたときに何が起こるかを知るためのヒントになる。
     変動する電場と言えば、電磁波はまさにそのような現象であるから、これは電磁波が原子に当たった時に起きる事を表しているとも言えるだろう。 まずはポテンシャルの形を具体的に決めないままで、論理の流れをざっと見てみることにしよう。
     やり方の基本思想は今までと変わらない。 まず次のような方程式については厳密な解が得られているものとする。
     いきなり「時間に依存するシュレーディンガー方程式」が登場して身構えてしまうかも知れないが、別に大したことはない。 ちょっと観察してみよう。 この式で使われているポテンシャル V(x) は時間に依存していない。 前に原子の構造を変数分離で解いたのを思い出してもらえばいい。 各エネルギー準位 En に属する解を n(x) として得たのだった。 そしてその時間変化まで知りたければ、その求めた解の後に
    のように位相が変化する振動部分を付ければいいのだった。 これは上の方程式の解になっている。 今回はこの方程式を少し変化させたら、この解がどう変化するかを知ろうというのである。
     新しく求めたい解は、すでに求まっている解が完全系であることから、
         (1)
    という形で展開できるに違いない。 この係数 cn は以前の手続きでは定数だとしていたが、今回は時間の関数になっているとする。
     前に摂動論を使った時とは説明の始め方が少し違っていると気付いたかも知れない。 前はまず n と En をそれぞれ λ のべき級数で表して方程式に代入し、 λ が同じ次数のものを集めて、幾つもの関係式を導くところから始めたのだった。 しかし今回はその作業は後回しになる。 「時間に依存する方程式」にはエネルギー E が含まれないため、べき級数で表すのは n だけでいい。 それで計算の手間は前よりずっと簡単になる。 前は得られた多数の関係式の形に合わせて一つ一つ次数を上げて解いて行ったのだが、今回はある程度一気に手続きが進められるのである。
     時間変化を考慮に入れた方が難しくなるイメージがあるのに、教科書のこの部分の説明がやたら少ないのは単にそういう事情である。 不親切で手抜きがされているのではないかという心配は要らない。 さあ、計算を進めよう。
     今後の計算が分かりやすいように
    と置くと、一番最初の方程式は、
    とシンプルに書けるわけだが、これに λU(x,t) という時間変化をする摂動項を追加しよう。
         (2)
     摂動論はわずかな変化に対してだけ使えるのだから λU は大き過ぎてはいけない。 本当は λ なんか導入する必要はなくて、 U は小さいとだけ言っておけばいいのだが、 λ があると次数の比較が分かり易いので入れて説明する。 後で式が導かれた後は λ = 1 と考えてやればいい。 これはまだ準備作業であって、λ に関わるのはもうしばらく後になる。
     この (2) 式に (1) 式を代入。
     左辺は cn と n をそれぞれ微分。 右辺は展開。 cn の時間微分は頭にドットをつけて表すことにする。
     左辺第2項を整理。 右辺第1項の は 固有値 En で置き換えることができる。
     これを見ると左辺第2項と右辺第1項は全く同じであり、相殺して

    資料の原本内容( テキストデータ全体をみる )

    遷移確率
    光電効果は光の粒子説の証拠とはならない?
    時間変化を含む摂動論
     今回は、ポテンシャルが時間的に変化する場合についても摂動論を使って解いてみよう。 これは単なる練習問題ではなくて、変動する電場の中に原子を置いたときに何が起こるかを知るためのヒントになる。
     変動する電場と言えば、電磁波はまさにそのような現象であるから、これは電磁波が原子に当たった時に起きる事を表しているとも言えるだろう。 まずはポテンシャルの形を具体的に決めないままで、論理の流れをざっと見てみることにしよう。
     やり方の基本思想は今までと変わらない。 まず次のような方程式については厳密な解が得られているものとする。
     いきなり「時間に依存するシュレーディンガー方程式」が登場して身構えてしまうかも知れないが、別に大したことはない。 ちょっと観察してみよう。 この式で使われているポテンシャル V(x) は時間に依存していない。 前に原子の構造を変数分離で解いたのを思い出してもらえばいい。 各エネルギー準位 En に属する解を n(x) として得たのだった。 そしてその時間変化まで知りたければ、その求めた解の..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。