3-6リッチ・テンソル

全体公開
ダウンロード pdfダウンロード
ページ数5
閲覧数1,125
ダウンロード数16
履歴確認

    ファイル内検索

    資料紹介

    リッチ・テンソル
    定義だけ示せば数行で済む内容だが、 そうは行かなかった。
    リッチテンソルの対称性
     リーマン・テンソルを次のように縮約してやって成分を減らしたものを、「リッチ・テンソル」と呼ぶ。
     教科書によっては、
    と定義するものもあるが、符号は反対になる。
     リッチテンソルの自由度はどれくらいあるのだろう。 それには対称性を調べてやらないといけない。
     リッチテンソルの添え字はたったの2つである。 この添え字にどんな数値を入れようとも大差はない。 何か特別な数値を入れたときだけ特別な振る舞いをするということはないようだ。 だから対称性を調べるとしたら、2つの添え字を入れ替えた時に対称関係があるかないかくらいしかないのではなかろうか。
     定義によればリッチテンソルの構造は次のようになっている。
     第1、第3項を見ると、それぞれ i と j を入れ替えても何も変わらないことがすぐに分かる。 第4項も少し頭をひねれば同じことが言えるだろう。 しかし第2項についてはそのような対称性が無さそうである。 もし第2項も i と j の入れ替えに対して対称ならば、リッチテンソル全体が添え字の入れ替えに対して対称だと結論できるのだが・・・。
     実は良く調べてやると第2項にも対称性があるのである。 例えば、第2項に含まれるクリストッフェル記号は、
    であるが、第2、第3項は同じだから打ち消しあう。 左辺に n があることは気にしないで、右辺だけを見て n と k の入れ替えを考えればいい。 よって、
    だと言える。  これではまだ対称かどうか分からない。 これに対して「 行列式を微分する時には行列の成分を微分して、それに行列式と逆行列の成分を掛ける 」という次のような公式
    を適用すれば、
    と表すことができる。 これで対称だと分かるだろう。
     以上のやり方は色んな教科書で紹介されているのでやっておかないとまずいかなーと思って載せただけであって、実はこんなややこしい事をしなくてもリッチテンソルの対称性はすぐに確かめられる。 まず、
    だったことを思い出そう。 この両辺に gki を掛けて縮約してやると、
    が得られる。 以上だ。
    定義の別形式
     4次元の場合のリッチテンソルは、まるで4行4列の対称行列のようであり、独立成分は10個である。 リーマンテンソルの中身がひどくスカスカだったのと比べるとかなり有効に情報が詰まっているようだ。
     リーマン・テンソルの独立成分がたったの20個で、リッチ・テンソルはその組み合わせだけで作られているのだから、リッチ・テンソルの成分をすべて展開して少ない項にまとめるのは非常に簡単にできるような気がする。 しかし第2部でそのような試みがうまく行かないことを見たはずだ。
     前回は4階の共変テンソルに揃えたから対称性を分かり易く論じる事が出来ていただけのことである。 前回の純粋な4階共変テンソルの形式からリッチ・テンソルを作ろうと思ったら、
    という式を使わないといけない。 別にこの形だけが正しいわけではなくて、前回やった対称性から、
    としてもいい。 他にどんなやり方があるか自分でちゃんと考えてみる事が大事だ。 とりあえず上の2つは次回の記事で利用するので紹介しておいた。
     リーマンテンソルに含まれる情報の密度は小さかったが、0になっている成分は4割程度でしかない。 だから上のような gij を混ぜた式で展開した場合にはそんなにきれいにはまとまらないし、まとめるほどの利点もないのである。
    リッチ・テンソルの意味

    資料の原本内容( テキストデータ全体をみる )

    リッチ・テンソル
    定義だけ示せば数行で済む内容だが、 そうは行かなかった。
    リッチテンソルの対称性
     リーマン・テンソルを次のように縮約してやって成分を減らしたものを、「リッチ・テンソル」と呼ぶ。
     教科書によっては、
    と定義するものもあるが、符号は反対になる。
     リッチテンソルの自由度はどれくらいあるのだろう。 それには対称性を調べてやらないといけない。
     リッチテンソルの添え字はたったの2つである。 この添え字にどんな数値を入れようとも大差はない。 何か特別な数値を入れたときだけ特別な振る舞いをするということはないようだ。 だから対称性を調べるとしたら、2つの添え字を入れ替えた時に対称関係があるかないかくらいしかないのではなかろうか。
     定義によればリッチテンソルの構造は次のようになっている。
     第1、第3項を見ると、それぞれ i と j を入れ替えても何も変わらないことがすぐに分かる。 第4項も少し頭をひねれば同じことが言えるだろう。 しかし第2項についてはそのような対称性が無さそうである。 もし第2項も i と j の入れ替えに対して対称ならば、リッチテンソル全体が..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。