3-3局所直線座標系

全体公開
ダウンロード pdfダウンロード
ページ数5
閲覧数516
ダウンロード数13
履歴確認

    ファイル内検索

    タグ

    資料紹介

    局所直線座標系
    一般相対論の思想に関わる話。
    接続係数は0にできる
     接続係数すなわちクリストッフェル記号は、テンソル量ではないが故に、少し特別な性質を持っている。 それは座標の取り方によって、ある地点での値を0にできるということだ。
     しかしあらゆる地点での値を同時に0に出来るというのではない。 どんなにうまく座標系を選んでも、地面が曲がっている限り、その地点を少し離れると0ではなくなってしまう。 接続係数の微分までは0にできないということだ。
     テンソル量の場合にはこのようなことはできない。 ある地点での値が0だったならば、それを別の座標系を使って表してみても0のままである。 逆に言えば0以外の値のものはどんな座標変換で表しても決して0には出来ないということになるだろう。
     ある特別な座標系を選んだ時にだけ、一点での接続係数が0にできるというのはちっぽけなことに思えるが、それをわざわざ取り上げるのには理由がある。 このことを知っていると今後の式変形で非常に有利になるのだ。
     例えば共変微分の定義には接続係数が含まれていて計算がかなり面倒くさい。 しかし座標の選び方によってはそれが0にできて、普通の微分として計算できることになる。 そしてもし計算した最終結果がテンソルになったなら、それは、その座標系に限らずあらゆる座標系でも同じことが成り立っていると結論できるわけだ。 そのような事例が後で出てくることになるだろう。
    0に出来る保証はあるか
     少し心配なのは、接続係数を0にするような座標系が、どんな場合であっても必ず見付かるかどうかということだ。 これを確かめておこう。
     第3部の初めの記事「 共変微分 」の式番号 (8) で、次のような変換側を導いた。
     説明の都合上、ダッシュの有る無しを反転させてある。 変換後の座標系にダッシュが付いていた方が見慣れているだろう? ある点 P での Γ tij を座標変換して Γ ' plm(P) = 0 となるようにしたい。 そのためには、
         (1)
    が成り立っていればいい。 この式はどこでも成り立っている必要はなくて、点 P において両辺の値が等しければいいだけである。 だから左辺は定数だと考えれば良いのであり、手が付けられないほど複雑な問題ではないようだ。
     しかし左辺は定数とは言え多数の成分を持っており、単純に A とでも置いて簡略化するわけにはいかない。 まぁ、微分したら0になるということだけは言える。 まずは当たりを付ける為、次のような単純な座標変換を考えてみよう。
     これを (1) 式の右辺の2階微分に代入すれば、定数 Γ tij(P) が残ってくれるだろう。 しかしもう一方の1階微分のところに代入した時が厄介だ。 x' を x で偏微分して逆数を取ってやれば計算は出来るが、余計な項が残り過ぎる。 そこで少し改良してやろう。
     ci というのは P 点での座標値である。 計算した後で xi に ci を代入するので、こうしておけば残った項もすっきりと消えてしまうだろう。 いや消え過ぎだ。 0では困るのでさらに細工。
     これでとりあえずは解決。 x'i と xi はこれに加えて定数分だけずれていても大丈夫なので、それを形式美にこだわって表現するなら次のようになる。 それと実際に計算してみると (1/2) が必要である事が分かるから今の内に入れておく。
         (2)
     この変換で全てがうまく行くはずだ。 まぁ初めからいきなりこれを示して確認に入っても良かったの

    資料の原本内容( テキストデータ全体をみる )

    局所直線座標系
    一般相対論の思想に関わる話。
    接続係数は0にできる
     接続係数すなわちクリストッフェル記号は、テンソル量ではないが故に、少し特別な性質を持っている。 それは座標の取り方によって、ある地点での値を0にできるということだ。
     しかしあらゆる地点での値を同時に0に出来るというのではない。 どんなにうまく座標系を選んでも、地面が曲がっている限り、その地点を少し離れると0ではなくなってしまう。 接続係数の微分までは0にできないということだ。
     テンソル量の場合にはこのようなことはできない。 ある地点での値が0だったならば、それを別の座標系を使って表してみても0のままである。 逆に言えば0以外の値のものはどんな座標変換で表しても決して0には出来ないということになるだろう。
     ある特別な座標系を選んだ時にだけ、一点での接続係数が0にできるというのはちっぽけなことに思えるが、それをわざわざ取り上げるのには理由がある。 このことを知っていると今後の式変形で非常に有利になるのだ。
     例えば共変微分の定義には接続係数が含まれていて計算がかなり面倒くさい。 しかし座標の選び方によっては..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。