1-15計量とは何か

全体公開
ダウンロード pdfダウンロード
ページ数8
閲覧数575
ダウンロード数16
履歴確認

    ファイル内検索

    タグ

    資料紹介

    計量とは何か
    脇道へ逸れてるようだが、この後で必要なのだ。
    計量の意味
     微小な距離 ds だけ離れた2点を考える。 一方の点の位置をデカルト座標で ( x , y ) と表したとすると、もう一方の点は ( x + dx , y + dy ) と表せるだろう。 このとき、ds、dx、dy の間には次の関係が成り立っている。
     もしもこの2点をデカルト座標以外の別の座標( x', y' )で表したとしても、2点間の距離 ds は変わらないはずだ。 そこでそれを2乗してやった値 ds² を別の座標系で表してやることを考えてみよう。 なぜ2乗した値を考えるかといえば、その方が楽だからである。 上の関係式で ds の2乗を外そうとすれば平方根を使わなくてはならないし、それが正の値であることを常に意識しなくてはならないことになる。
     ds² はどんな座標系で表したとしても、次のような dx' と dy' を組み合わせて作った項の和で表せるはずである。
     なぜなら、dx は微少量なので dx' と dy' の一次式で表されるだろうし、 dy も同様であり、それらをそれぞれ2乗して和を取ったものが ds² なのだから必ずこの形式になるというわけである。  これについては後で実例を示せば納得してもらえるだろう。
     大切なのはこの4つの係数 A, B, C, D である。 この情報さえあれば、2点間の微小距離 ds² をそれぞれの座標系でどのように表せば良いのかが分かる。 この係数だけを取り出して次のようにきれいに並べて表したものを「計量」と呼ぶ。 英語で言えば「metric」。 長さを測るための基準という意味だ。
     ちゃんと並べ方に規則があることに気をつけてもらいたい。 察しがついているかも知れないが、この少し後でしっかり定義しよう。 これを先ほどのデカルト座標の場合に当てはめれば、
    と表せることになる。 この単位行列みたいなのがデカルト座標の計量である。
     ところで先ほどの式
    の第2項と第3項は一つにまとめられるのではないかと気付いたかも知れないが、項をまとめずにわざわざこのように分けて書いたのには訳がある。 dx、dy で表すのをやめて dx1, dx2 のように添え字を使って表してやればその利点が見えてくるだろう。 ついでに A, B, C, D も添え字を使った gij という書き方で区別してやることにしよう。 こうすることで、
    と書けて、
    のように Σ 記号を使ってまとめる事ができるのである。 アインシュタインの省略記法を使えば、結局、
    と書くだけでいいことになる。 そこらの教科書では 「無限小線素 ds² が上のように表せる時、gij を計量と呼ぶ」 という一文だけで説明してあることが多く、これだけでは何のことか分からないのが普通だと思うのだが、噛み砕けばこういう意味だったというわけだ。
     先ほど計量を書き並べる時の規則を説明するのを飛ばしたが、ここまで来れば説明は簡単だ。 gij を行列の ( i , j ) 成分として並べて表示してやればいいのである。
     g12 と g21 は本来一つの項にまとめられるはずのものを、形式的に書き表したいがためだけにわざわざ二つに分けたものである。 ついでだから二つの値を同じに合わせておくことにしよう。 こう決めておけば計量はいつも対称行列で表せることになり、計算の手間が省けるというわけだ。
    実例
     さあ、ここまでの内容を実例を使って確認しておこう。 デカルト座標から極座標への変換を考える

    資料の原本内容( テキストデータ全体をみる )

    計量とは何か
    脇道へ逸れてるようだが、この後で必要なのだ。
    計量の意味
     微小な距離 ds だけ離れた2点を考える。 一方の点の位置をデカルト座標で ( x , y ) と表したとすると、もう一方の点は ( x + dx , y + dy ) と表せるだろう。 このとき、ds、dx、dy の間には次の関係が成り立っている。
     もしもこの2点をデカルト座標以外の別の座標( x', y' )で表したとしても、2点間の距離 ds は変わらないはずだ。 そこでそれを2乗してやった値 ds² を別の座標系で表してやることを考えてみよう。 なぜ2乗した値を考えるかといえば、その方が楽だからである。 上の関係式で ds の2乗を外そうとすれば平方根を使わなくてはならないし、それが正の値であることを常に意識しなくてはならないことになる。
     ds² はどんな座標系で表したとしても、次のような dx' と dy' を組み合わせて作った項の和で表せるはずである。
     なぜなら、dx は微少量なので dx' と dy' の一次式で表されるだろうし、 dy も同様であり、それらをそれぞれ2乗して和を取ったも..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。