慣性モーメントテンソル

全体公開
ダウンロード pdfダウンロード
ページ数16
閲覧数1,870
ダウンロード数18
履歴確認

    ファイル内検索

    タグ

    資料紹介

    慣性モーメントテンソル
    回転を立体的に表す手法。
    動機と準備
     力学のページでは回転軸から r だけ離れた位置にある質点の慣性モーメント I が
    と表せる 理由を説明 した。 多数の質点が集まっている場合にはそれら全ての和を取ればいいし、連続したかたまりについて計算したければ各点の位置と密度を積分すればいい。 この I を使えば角速度 ω と角運動量 L の間に
    という関係が成り立つのだった。
     しかしこれでは不便なところがある。 一旦回転軸の方向を決めてその軸の周りの慣性モーメントを計算したら、その値はその回転軸に対してしか使えないのである。 まぁ当たり前の話ではある。 軸の方向を変えたらその都度計算し直してやればいいだけの話だ。 それで満足できる人はそれでいい。 この先も読まなくてもいい。
     しかし回転軸の方向をほんの少しだけ変更したらどうなるのだろう。 元から少しずらしただけなのだから、慣性モーメントには少しの変化があるだけに違いない。 わざわざ一から計算し直さなくても何か楽に求められるような関係式が成り立っていそうなものである。
     それがちゃんとあるのだ。 ある軸について一旦計算しておきさえすれば、「ほんの少しずらした場合」にとどまらず、どんな方向に変更した場合にでもちょっとした手続きで新しい慣性モーメントが求められるという素晴らしい方法だ。 もちろん楽をするためには少々の複雑さには堪えねばならない。
     回転軸を色んな方向に向ける事を考えるのだから、軸の方向をベクトルで表しておく必要がある。 角速度ベクトル ω と角運動量ベクトル L を次のように拡張しよう。 今後はベクトルは太字で表すことにする。
     このベクトルの意味について少し注意が必要である。 例えば、
    と書けば、x軸の周りに角速度 ωx で回転するという意味であるとしか考えようがないから問題はない。 それでは、
    となった場合にはどう解釈すべきだろう。 x 軸を中心に ωx で回転しつつ、同時に y 軸の周りにも ωy で回転するなどというややこしい意味に受け取ってはいけない。 x 軸が回った状態で y 軸の周りを回るのと、y 軸が回った状態で x 軸の周りを回るのでは動きが全く違う。 そのような複雑な運動を一つのベクトルだけで表せるだろうと考えるのは非常に甘いことである。
     ここは単純に、( ωx , ωy , 0 ) の方向を向いた軸の周りを、角速度
    で回っている状況だと理解するべきである。 この計算では ω は負値を取る事ができないが、逆回転を表せないのではないかという心配は要らない。 というのも、軸ベクトル ω の向きが回転方向をも決めているからである。 「右ネジの回転と進行方向」と同様な関係になっていると考えれば何も問題はない。 逆回転を表したければ軸ベクトルの向きを正反対にすればいい。
    素人考え
     記号の準備が整ったので、すぐにでも関係式を作りたいところだ。 x、y、z 軸それぞれの周りに物体を回した時の慣性モーメント Ix , Iy , Iz をそれぞれ計算してやれば、
    という3つの式が成り立っている。 それで、これを行列を使って
    のように配置してやれば3つ全てを一度に表してやる事が出来るだろう。 後はこれを座標変換でグルグル回してやりさえすれば、回転軸をどんな方向に向けた場合についても旨く表せるのではないだろうか。
     これは基本的なアイデアとしては非常にいいのだが、すぐに幾つかの疑問点にぶつかる事に気付く。 例えば、( ωx, ωy, 0

    資料の原本内容( テキストデータ全体をみる )

    慣性モーメントテンソル
    回転を立体的に表す手法。
    動機と準備
     力学のページでは回転軸から r だけ離れた位置にある質点の慣性モーメント I が
    と表せる 理由を説明 した。 多数の質点が集まっている場合にはそれら全ての和を取ればいいし、連続したかたまりについて計算したければ各点の位置と密度を積分すればいい。 この I を使えば角速度 ω と角運動量 L の間に
    という関係が成り立つのだった。
     しかしこれでは不便なところがある。 一旦回転軸の方向を決めてその軸の周りの慣性モーメントを計算したら、その値はその回転軸に対してしか使えないのである。 まぁ当たり前の話ではある。 軸の方向を変えたらその都度計算し直してやればいいだけの話だ。 それで満足できる人はそれでいい。 この先も読まなくてもいい。
     しかし回転軸の方向をほんの少しだけ変更したらどうなるのだろう。 元から少しずらしただけなのだから、慣性モーメントには少しの変化があるだけに違いない。 わざわざ一から計算し直さなくても何か楽に求められるような関係式が成り立っていそうなものである。
     それがちゃんとあるのだ。 ある軸につ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。