3-7ネーターの定理

全体公開
ダウンロード pdfダウンロード
ページ数14
閲覧数756
ダウンロード数14
履歴確認

    ファイル内検索

    タグ

    資料紹介

    ネーターの定理
    気になってはいたけど、まとめるのが面倒だったんだよなぁ。
    定理の概要
     物理的な対象に何らかの対称性が認められるとき、それに対応して何らかの保存量の存在が導かれる。 これが有名な「ネーターの定理」の意味するところだ。
     例えば、有名な運動量保存則というものがある。 この法則が、実は空間の並進対称性から導かれるものであることがネーターの定理によって分かる。 並進対称性というのは、考えている対象を全て一斉に平行移動してみたところで物理法則は何も変わりません、というものである。 我々の住む空間にそういう性質があるから、運動量保存則が成り立っているのだと言えるわけだ。
     他にもあって、角運動量保存則というのは空間の回転対称性に関連している法則だ。 つまり、宇宙には特別な方向などはなくて、どの方向を向けても法則は変わりませんという性質が、この法則と結び付いていると言える。
     また、エネルギー保存則は、時間発展対称性に結び付いている。 この対称性は、時間が経過しても今日も明日も明後日も法則は変わりませんというものだ。
     今回はこれらのことを説明してみよう。
    この定理は重要だろうか
     ところで、運動量保存則と並進対称性とが関連していることについては、すでにネーターの定理を使わずに説明したことがある。 ここよりずっと前、第 2 部の「 ポアッソン括弧式 」の一番最後のところだ。 そこでは括弧式に頼って説明したのだが、いやいや、そんな道具を使わないでも、もっと簡単に説明することだって出来る。
     ラグランジアンの中に、ある座標変数 が含まれていなかったとしよう。 このとき、この変数だけを → = + ε という具合にわずかにずらす座標変換を考えると、当然のことながら、新しく作られたラグランジアンにも は含まれないし、それどころかラグランジアンは以前と全く同じ形をしたままである。 これは を並進させる変換に対して、ラグランジアンに対称性があると言えるだろう。 さて、これをラグランジュ方程式に代入してみればいい。 ラグランジュ方程式というのは次のようなものだった。
     L に が含まれないというのだから、これの第 2 項は 0 だ。 それで第 1 項だけが残ることになるが、第 1 項の括弧の中は一般化運動量 と呼ばれているのだった。 それで、 は時間的に変化せず、一定だと言える。 すなわちこれは運動量保存則に他ならない。
     こんな具合に説明できてしまうくらいの内容ならば、ネーターの定理なんて大層なものは要らないのではないだろうか? 本題に入る前にもうしばらく、私の馬鹿な思考の彷徨いに付き合ってみて欲しい。
     ネーターの定理の意味することはわざわざ数学的に証明するまでもないことのように思える。 対称性があるというのは、変換しても何も変わらないという意味だ。 変わらないのなら、その「変わらないもの」を代表する数値が当然どこかにあるはずだろう。 それだけの事ではないのか?
     いや、感覚的にはそうかも知れないが、そんなにも単純だろうか。 何も変わらない時、変わらないものは一つだけではない。 何もかもが変わらないのである。 対称性に関連したある一つの変わらない変数が一体どれであるかを特定せよと言われても困ってしまう。 並進変換でラグランジアンが変化しないとき、それが「運動量保存」に結び付いている効果だなんて、すぐに分かるものだろうか? エネルギーだって変化していないはずだ。 なぜ並進変換の場合にはエネルギー保存は関係ないと言い切れるのだろう。
     

    資料の原本内容( テキストデータ全体をみる )

    ネーターの定理
    気になってはいたけど、まとめるのが面倒だったんだよなぁ。
    定理の概要
     物理的な対象に何らかの対称性が認められるとき、それに対応して何らかの保存量の存在が導かれる。 これが有名な「ネーターの定理」の意味するところだ。
     例えば、有名な運動量保存則というものがある。 この法則が、実は空間の並進対称性から導かれるものであることがネーターの定理によって分かる。 並進対称性というのは、考えている対象を全て一斉に平行移動してみたところで物理法則は何も変わりません、というものである。 我々の住む空間にそういう性質があるから、運動量保存則が成り立っているのだと言えるわけだ。
     他にもあって、角運動量保存則というのは空間の回転対称性に関連している法則だ。 つまり、宇宙には特別な方向などはなくて、どの方向を向けても法則は変わりませんという性質が、この法則と結び付いていると言える。
     また、エネルギー保存則は、時間発展対称性に結び付いている。 この対称性は、時間が経過しても今日も明日も明後日も法則は変わりませんというものだ。
     今回はこれらのことを説明してみよう。
    この定理は重要だ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。