2-7ポアッソン括弧式

全体公開
ダウンロード pdfダウンロード
ページ数4
閲覧数431
ダウンロード数13
履歴確認

    ファイル内検索

    タグ

    資料の原本内容( テキストデータ全体をみる )

    ポアッソン括弧式
    量子力学でこれを応用する
    括弧式の導入
     ハミルトニアンを使う利点がどういうところにあるかという部分を説明するために、ちょっと便利な表現を導入することにしよう。
     まず、ある物理量 X が位置 と運動量 と時間 t の関数となっているとする。
     これを時間 t で微分してやることを考える。 位置や運動量自体も時間の関数になっていることを考慮に入れて計算してやると、
    と書けるだろう。 ここに前回導いたハミルトンの正準方程式を代入してやれば、
    となる。 よく見ると結構対称的な形になっていることであるし、これを毎回書くことになるのは面倒なので、これを略して次のように書くことにしよう。
     ここで導入された右辺第2項の部分が「ポアッソン括弧式」と呼ばれるものである。 定義は見たままなのでわざわざ書くまい。
     物理量 X として や を当てはめてやれば、つまりそれは、
    のように置き換えてみるという意味だが、そうすると (1) 式の第1項は 0 となるので
    という関係式が出来上がるだろう。 実はこれは前回導いたハミルトンの正準方程式そのものなのである。 ちゃんとそう..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。