1-4微分演算子の座標変換

全体公開
ダウンロード pdfダウンロード
ページ数8
閲覧数2,065
ダウンロード数19
履歴確認

    ファイル内検索

    タグ

    資料紹介

    微分演算子の座標変換
    計算は面倒だが理屈は簡単。
    偏微分の変換
     偏微分を含んだ式の座標変換というのは物理でよく使う。 この計算は微分演算子の変換の方法さえ分かっていればまるで問題ない。
     例えばデカルト座標から極座標へ変換するときの偏微分の変換式は、
    となるのであるが、なぜそうなるのかというところまで理解できぬまま、そういうものなのだとごまかしながら公式集を頼りにしている人が結構いたりする。 学生時分の私がそうであったし、最近、読者の方からもこれについての質問を受けたので今回の説明には需要があるに違いないと判断する。
     以下ではこのような変換の導き方と、なぜそのように書けるのかという考え方を説明する。 式だけ示されても困る人もいるだろうから、ついでに使い方も説明しておこう。
    考え方
     ある関数 A を x で偏微分しようと考える。 つまり記号で書けば、∂A/∂x を計算しようということである。  ところがそこでふと気付く。 何と、A は x の関数ではなくて、極座標 ( r, θ, φ ) で表された関数だった!
    A ( r, θ, φ )
     こんなときにはどうしよう。 あきらめるか? いや、ちゃんと方法がある。 そもそも A を x で偏微分するというのは x が微小変化したときの A の微小変化を x の微小変化で割るということなのであるから、例えば、r が微小変化したときの A の微小変化の割合と、 x だけ微小変化したときの r の微小変化の割合をかけてやれば、 x が微小変化したときの A の微小変化を間接的に求めたことになるのではないだろうか?  言葉にすると面倒な表現だが、数式で表すとシンプルであって、
    ということである。 まあ、微分なんていうのは結局のところ、微小量同士の割り算に過ぎないということだ。 その証拠に上の式を約分すれば (∂A/∂x) になってしまう。  しかしこれだけでは正しくないので気を付けよう。  まだ考えが抜けている部分がある。  極座標の場合、x が変化すれば r だけでなく θ、φ も変化するのである。 すると、それに釣られて A はさらに変化することになる。 だから x が変化したときの A の変化の割合を知りたければ、これらの影響も足し合わせなければならない。 つまり、次のようになる。
     さて、ここまで関数 A を使って説明してきたが、この話は別に A でなくともどんな関数でもいいわけで、この際、書くのを省いてしまうことにしよう。
     ただし、A を省くと (∂/∂r) などは「微分演算子」になり、そのすぐ後に来るものを微分しなさいという意味になってしまうので、そのままの順序だと都合が悪い。 例えば第1項目の A を省いてそのままの順序にしておくと、この後に来る関数に (∂r/∂x) を掛けてからその全体を r で微分しなさいという意味にとられてしまう。 それで式の意味を誤解されないように各項内の順序を変えておいた。
    テクニック
     さあ、あとは、(∂r/∂x), (∂θ/∂x), (∂φ/∂x) の3つを計算すればいいだけだ。 そのために、( x , y , z ) と ( r , θ , φ ) の間の関係式が必要になる。 しかし、次の関係を使って微分を計算するのは少々面倒である。
     これで計算できないこともない。 面倒だが逆関数の微分を使ってやればいいだけの話だ。 しかし別の方法もある。
    というすっきりした関係式を使う方法だ。 どちらの方法が簡単かは場合によって異なる。
     ここ

    資料の原本内容( テキストデータ全体をみる )

    微分演算子の座標変換
    計算は面倒だが理屈は簡単。
    偏微分の変換
     偏微分を含んだ式の座標変換というのは物理でよく使う。 この計算は微分演算子の変換の方法さえ分かっていればまるで問題ない。
     例えばデカルト座標から極座標へ変換するときの偏微分の変換式は、
    となるのであるが、なぜそうなるのかというところまで理解できぬまま、そういうものなのだとごまかしながら公式集を頼りにしている人が結構いたりする。 学生時分の私がそうであったし、最近、読者の方からもこれについての質問を受けたので今回の説明には需要があるに違いないと判断する。
     以下ではこのような変換の導き方と、なぜそのように書けるのかという考え方を説明する。 式だけ示されても困る人もいるだろうから、ついでに使い方も説明しておこう。
    考え方
     ある関数 A を x で偏微分しようと考える。 つまり記号で書けば、∂A/∂x を計算しようということである。  ところがそこでふと気付く。 何と、A は x の関数ではなくて、極座標 ( r, θ, φ ) で表された関数だった!
    A ( r, θ, φ )
     こんなときにはどうしよう。 あ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。