1-2見かけの力

全体公開
ダウンロード pdfダウンロード
ページ数7
閲覧数378
ダウンロード数10
履歴確認

    ファイル内検索

    タグ

    資料紹介

    見かけの力
    ついでに相対論の準備も。
     今回は、異なる座標を採用している人から見たときに、物体の運動がどのように表されるかを調べる事にしよう。 とは言っても、極座標のような面倒なものにはまだチャレンジしない。 それは第 2 部でごく簡単に紹介するつもりでいる。 ここではそのための基本を学ぶために簡単な例だけを示すのである。
     その前に少し聞いておいて欲しいことがある。 力学のページでは、まず、直線的に運動する物体について考察して、ニュートンの運動方程式を理解したのだった。 そして同じ事が x, y, z の 3 成分に対してそれぞれ独立に成り立つものだと信じて、次のような 3 つの式を用意したのだった。
     このことは「我々の日常の範囲では十分に成り立っている」ことが確かめられているので、ただ闇雲に信じているだけの状態とは少し違っているわけだが。
     さて、このような 3 つの式を立てたとき、あまり意識していないかも知れないが、デカルト座標をごく自然なものとして受け入れ、採用したことになる。 3 つの軸の指す方向をそれぞれ独立した対等なものだと考えているからである。 これら 3 つの式をベクトルを使ってまとめて表すと、
    のように書けるが、この有名でシンプルな形は、デカルト座標系で成り立っている方程式だと言えよう。 この形の運動方程式が唯一絶対的なものだと考えてはいけない。 別の座標系を採用した場合には、この方程式は別の形式で書き直されることになるのである。
     例えば、ある点の周りを綺麗に円運動する物体について論じる時には、むしろ極座標を使った式に書き換えた方が便利なことがある。 普通の真面目な力学の教科書には、そういう場合のテクニックが色々と説明されているわけだ。 しかし私は計算技術的なことには興味がないので、その辺りの話にはあまり踏み込まないでいるのである。
    慣性系
     等速運動する列車の中の人が物体の運動を論じるとどうなるだろう? 窓の外に見える景色は次々と後へ飛び去って行くが、列車の中は平穏無事だ。 車内のごく近くにある物体の位置ついては、動いている列車のどこかを基準にして論じ、外の世界との関係はあまり考えないことだろう。
     列車が x 方向に速度 v で進んでいるとすると、外の世界の座標 ( x, y, z ) と、車内の人の使う座標 ( x', y', z' ) との間に、
    という関係があることになる。 ただし簡単にするために t = 0 の瞬間には両者が基準にしているものが同じ位置にあったと仮定している。 t 秒後には列車は vt だけ先へ進んでいるから、外の世界の人が x だと言っている点は、車内の人にとっては vt だけ後方に見えるという意味である。
     さて、物体の運動は (1) 式で表せるとのことだったが、これを ( x', y', z' ) を使って書き換えたらどうなるだろう。 手続きは簡単だ。 (2) 式を代入してやればいい。 y' や z' については何も変わらないのはすぐ分かる。 x' については、x = x' + vt と書き換えて代入してやればいいのであり、難しくもない。
     vt の項は、t で一回微分しただけでは v が残るが、もう一度微分する必要があるので結局はきれいに消えてしまうだろう。 よって、列車内で成り立つ運動方程式は、
    という、外の世界と全く同じ形となっている事が分かる。 実際、列車が安定して静かに走っている時には、我々は車内の物体の動きについて何らの違和感も感じない。 ボールを真上に投げ

    資料の原本内容( テキストデータ全体をみる )

    見かけの力
    ついでに相対論の準備も。
     今回は、異なる座標を採用している人から見たときに、物体の運動がどのように表されるかを調べる事にしよう。 とは言っても、極座標のような面倒なものにはまだチャレンジしない。 それは第 2 部でごく簡単に紹介するつもりでいる。 ここではそのための基本を学ぶために簡単な例だけを示すのである。
     その前に少し聞いておいて欲しいことがある。 力学のページでは、まず、直線的に運動する物体について考察して、ニュートンの運動方程式を理解したのだった。 そして同じ事が x, y, z の 3 成分に対してそれぞれ独立に成り立つものだと信じて、次のような 3 つの式を用意したのだった。
     このことは「我々の日常の範囲では十分に成り立っている」ことが確かめられているので、ただ闇雲に信じているだけの状態とは少し違っているわけだが。
     さて、このような 3 つの式を立てたとき、あまり意識していないかも知れないが、デカルト座標をごく自然なものとして受け入れ、採用したことになる。 3 つの軸の指す方向をそれぞれ独立した対等なものだと考えているからである。 これら 3 つの..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。