1-8ローレンツ力

全体公開
ダウンロード pdfダウンロード
ページ数3
閲覧数1,225
ダウンロード数16
履歴確認

    ファイル内検索

    タグ

    資料紹介

    ローレンツ力
    「ろーれんつか」と読んじゃだめだよ。
    電流間に働く力
     前回は電流によって磁場が発生するという話であったが、今回は逆にその磁場によって電流が力を受けるという話をする。
     平行に流れる2つの電流の間には引力が働き、その単位長さあたりにかかる力の大きさは
    と表される。 これは実験事実である。 ちなみに逆方向に流れる電流の間には斥力が働く。  しかし、すでに我々は電流の周りには磁場が発生しているという考えを使っているので、これは電流と電流の間に直接力が働くのではなく、一方の電流が作った磁場によってもう一方の電流が力を受けるのだと考えることにしよう。 実際、上の式を見れば、電流の周りに発生する磁場に電流の大きさが掛かっている形になっている。 簡単に書けば、
    だということである。 これを力の向きも考えて式で表せば、
    と表せる。 ただし外積を使うための工夫として電流の微小長さのベクトル ds を導入し、その部分にかかる力を dF と表現した。 これが電流が磁場から受ける力を表す式であり、「アンペールの力」と呼ばれている。
    電流の定義
     先ほど2つの電流の間に働く力が実験事実として上のように表されると書いたが、まだ定数 μ0 の大きさを決めていなかった。 そこでこの式が成り立つように定数を決めなくてはならない。 普通は実験で決めるところなのだがここではそうはしない。 なぜなら電流の単位がまだ決まっていないからである。 ちょうど良いので定数 μ0 がキリのいい数字になるように電流の単位の方を決めてやることにしたのである。 定数 μ0 は好きなように決めてやればいいのだ。 どうせなら便利な方が良いに決まっている。  そこで、μ0 = 4π × 10-7 であると決めることにした。 このように決めておけば分母にある 2π と打ち消しあって計算が非常に楽になるし、ビオ・サバールの法則の場合には分母が 4π であるので係数の部分は 10-7 だけになる。 もし電流の大きさを決めるための精密な測定をする際に力の大きさを無理数に合わせなければならないとしたらかなり面倒なことになるのでこうやって π を消してやるのはかなりうまい方法である。 定数をこの値に決めるためには、次のような言葉で電流を定義してやればよいことになる。
    1 A の定義
    1 m 離して置いた同じ大きさの平行に流れる電流の間に働く力が 1 m あたり 2 × 10-7 N であるとき、この電流の大きさを 1 A とする。
     ではなぜ 10-7 にしたのであろうか? もし 1 m 離して置いた電流の間に働く力が 1 N であるときの電流を 1 A だということにしたらもっと計算が楽になったかも知れない。 しかし 1 N というのは電線にとってはかなりの力である。 これでは測定しようとしている電線が吹っ飛んでしまうことだろう。 しかもそのような力を及ぼし合うような大電流を流せばあっという間に電線は焼き切れてしまう。 これでは直接 1 A を測定することが難しい。 直接測れた方が誤差が入り込む可能性が少ないのだ。 それで電線が焼ききれるほど大き過ぎず、かと言って力を測定するのに小さ過ぎない値を選ぶ必要があったのだろうと思われる。
    磁場の単位
     電流の単位が定義されたので、これをもとに磁場の単位を決めることが出来る。 すぐ上に出てきたアンペールの力を使って考えるのが一番楽である。 つまり、1 A の電流が磁場から 1 m あたり 1 N の力を受けるとき、この磁場を 1 テスラと呼ぶことにする。

    資料の原本内容( テキストデータ全体をみる )

    ローレンツ力
    「ろーれんつか」と読んじゃだめだよ。
    電流間に働く力
     前回は電流によって磁場が発生するという話であったが、今回は逆にその磁場によって電流が力を受けるという話をする。
     平行に流れる2つの電流の間には引力が働き、その単位長さあたりにかかる力の大きさは
    と表される。 これは実験事実である。 ちなみに逆方向に流れる電流の間には斥力が働く。  しかし、すでに我々は電流の周りには磁場が発生しているという考えを使っているので、これは電流と電流の間に直接力が働くのではなく、一方の電流が作った磁場によってもう一方の電流が力を受けるのだと考えることにしよう。 実際、上の式を見れば、電流の周りに発生する磁場に電流の大きさが掛かっている形になっている。 簡単に書けば、
    だということである。 これを力の向きも考えて式で表せば、
    と表せる。 ただし外積を使うための工夫として電流の微小長さのベクトル ds を導入し、その部分にかかる力を dF と表現した。 これが電流が磁場から受ける力を表す式であり、「アンペールの力」と呼ばれている。
    電流の定義
     先ほど2つの電流の間に働く力が実験事実と..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。