5-1ボソンとフェルミオン

全体公開
ダウンロード pdfダウンロード
ページ数8
閲覧数1,243
ダウンロード数13
履歴確認

    ファイル内検索

    タグ

    資料紹介

    ボソンとフェルミオン
    そしてエニオンも少々。
    波動関数は実在か
     波動関数は実在だろうか? 原子核の周りに作られる波動関数の振る舞いは、電子そのものの振る舞いであるようにも思える。 しかし観測の瞬間に波束が収縮する過程が物理的ではないため、波動関数を実在だと考えることには問題がある。
     いや、しかし! 実在とまでは言えないかも知れないが、これは我々が知覚するこの空間に存在する何かをかなり近いところまで表しているのではないだろうか。  これまで強くそう信じさせるような説明をしてきたわけだが、その期待を打ち砕くようなことをして見せよう。 次のような方程式を立ててみる。
     これは 2 粒子のシュレーディンガー方程式だ。 ここで使った ∇a2、∇a2 というのは、
    であり、( xa, ya, za ) ( xb, yb, zb ) というのはそれぞれ粒子 A 、B の座標である。 ポテンシャル V の形によっては、この方程式は解けることもあるし、解くのが難しいこともある。 それは 1 粒子の場合よりも複雑ではあることだろう。 そして粒子 A が に、同時に粒子 B が の範囲に同時に見出される確率は、
    のようにして計算できる。 ここで出て来た波動関数の変数は 6 つである。
     つまりこれは 6 次元空間内に存在する波であり、現実とは掛け離れている。 抽象的な計算結果に過ぎないのではないだろうか。 考える粒子の数が増えるほど、こんな風に波動関数の次元は増える。 これでも波動関数自体が実在に極めて近い何かだと信じていられるだろうか。
     もしできるなら、粒子の数が増えても次元を増やさないで済むような理論が欲しいところだ。
    多粒子系の量子力学
     上で考えたような「複数粒子の波動関数」はヘリウム原子や水素分子などの状態を計算するのにも役に立つ。 これまでは電子のことばかり考えてきたが、波動関数は電子を表すためだけに使われるわけではない。
     例えば原子核を、電子と同じような 1 つの粒子として扱ってやる事も出来るのである。 方程式の上では原子核と電子の違いといえば質量くらいのものでしかない。 そしてその振る舞いはやはり波で表される。 シュレーディンガー方程式の守備範囲は結構広くて、質量を持ついろんな粒子に適用できる。
     応用には深入りしないという方針なので、この辺りの計算の実例については各自で経験を積んでもらうことにしよう。 1 粒子だけを扱うのが量子力学の主流なのだと思い込んではいけない。 1 粒子は基礎だから多く説明してきただけだ。 量子力学は多粒子についても応用の広い学問なのである。
    同種多粒子系
     ところで、同種の粒子が多数ある場合には面白いことが言えるので、そこだけ軽く紹介しておこう。
     N 個の同種の粒子があるとする。 これら全ての粒子の状態を表す波動関数は、
    のように多数の変数で表す事が出来るわけだが、ここで、2つの粒子の座標値を入れ替えたら、波動関数にどんな変化があるだろうか。 同種の粒子であるというのだから、2 つの粒子を区別することは出来ない。 シュレーディンガー方程式には各粒子を区別するようなパラメータは質量くらいしかなくて、今はそれも同じものを使っているのだから、理論上も区別できるものはない。 しかし、この入れ替え操作によって波動関数には何の変化も起こらないと言い切れるだろうか。
     例えば位相には変化が起こるかも知れない。 式の全体に eiθ を掛けても確率には影響が見られないのだったから、もしそのような変化が起こってい

    資料の原本内容( テキストデータ全体をみる )

    ボソンとフェルミオン
    そしてエニオンも少々。
    波動関数は実在か
     波動関数は実在だろうか? 原子核の周りに作られる波動関数の振る舞いは、電子そのものの振る舞いであるようにも思える。 しかし観測の瞬間に波束が収縮する過程が物理的ではないため、波動関数を実在だと考えることには問題がある。
     いや、しかし! 実在とまでは言えないかも知れないが、これは我々が知覚するこの空間に存在する何かをかなり近いところまで表しているのではないだろうか。  これまで強くそう信じさせるような説明をしてきたわけだが、その期待を打ち砕くようなことをして見せよう。 次のような方程式を立ててみる。
     これは 2 粒子のシュレーディンガー方程式だ。 ここで使った ∇a2、∇a2 というのは、
    であり、( xa, ya, za ) ( xb, yb, zb ) というのはそれぞれ粒子 A 、B の座標である。 ポテンシャル V の形によっては、この方程式は解けることもあるし、解くのが難しいこともある。 それは 1 粒子の場合よりも複雑ではあることだろう。 そして粒子 A が に、同時に粒子 B が の範囲に同時に見出..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。