2-6演算子は行列だ

全体公開
ダウンロード pdfダウンロード
ページ数9
閲覧数995
ダウンロード数12
履歴確認

    ファイル内検索

    タグ

    資料紹介

    演算子は行列だ
    エルミート演算子とは何か
    線形変換
     波動関数からエネルギーや運動量の値を取り出すには微分することが必要だった。 波動関数が指数関数の形をしていれば関数の形は変わらないが、それ以外の形をしていた場合には波動関数の形はひどく変化を受けることになる。  この状況をベクトル表現で解釈し直すとどのようになるだろうか。  波動関数は状態ベクトルとして表せるのだった。 波動関数に微分を施して変化した関数もやはり関数であって、同じ方法でベクトルとして表せるはずである。  ならば、元のベクトルと変化後のベクトルとの関係をベクトル変換のようなものであると考えてはどうだろうか? ベクトルの変換は行列を使って表すことが出来る。 この考えで行けそうだ。  しかしどんな複雑な変換でも行列で表せると思ったら大間違い。 行列なんていうのは所詮、線形変換を表すことしか出来ないのだ。 線形変換とは、
    f ( ax + by ) = a f (x) + b f (y)
    という性質を持った変換 f のことである。 つまり、元のベクトル x が定数倍されれば変換後のベクトルも同じだけ定数倍されるし、別のベクトルとの和を取ったベクトルを変換すれば、それぞれを別々に変換したものの和を取ったものと等しくなるという、実に厳しい制限付きの変換である。 しかしこのような制限があるからこそ線形代数という扱いやすい学問が出来ているのであって、さもなければ手に負えないものになっていただろう。
     さあ、安心して構わない。 関数の微分には同じ性質があるではないか。  それでこういう性質を持った演算子を「線形演算子」と呼ぶこともある。  つまりベクトル表現を使えば、線形演算子の働きは無限行、無限列の行列として表すことができるということだ。
     たった一つの物理量が無限の成分を持つ量に化けてしまうなんて! なぜこんなに情報量が増えてしまったのかと不思議に思う必要はない。 ある状態にはある運動量が対応し、別の状態には別の運動量が対応している。 この無限次元の行列はそれら全ての状態についての対応関係を書き並べたものなのである。  それにしても無限×無限個の成分はあまりに多すぎるのではないかと思うかも知れないが、この行列にはある規則があって、実際には無限個の情報しか入っていないので安心してもらいたい。 これについてはしばらく後で分かるだろう。
    固有ベクトル
     行列には「固有ベクトル」というものが存在する。 その行列で変換しても方向が全く変化しないような特別なベクトルのことだ。 大抵の行列はそういう不思議な方向を複数持っている。 ベクトルの方向は変化しないがベクトルの長さだけは変化する。 その長さの変化の定数を「固有値」と呼ぶ。  このような特別な方向が存在することはそれほど不思議でもない。 図を書いてやれば一目瞭然と分かることだ。
     しかしここで線形代数の講義を差し挟むと本筋から離れる可能性が高いので、補習コーナーにでもまとめておくことにしよう。
    ユニタリ変換の効用
     物理量が行列で表されると言われても抽象的過ぎてピンと来ない。 どんな物理量をどんな行列で表したらいいのだろうか。 その条件を探ってみよう。
     指数関数を座標で微分した時に、中から運動量の値が飛び出してくることを除けば、関数の形は変わらないのだった。 すなわち、状態が変わらないまま定数分だけ変化するわけだ。  これは先ほど話した固有ベクトルと固有値の話と非常に似ている。 行列で変換してもベクトルの方向が変わらないということは状態

    資料の原本内容( テキストデータ全体をみる )

    演算子は行列だ
    エルミート演算子とは何か
    線形変換
     波動関数からエネルギーや運動量の値を取り出すには微分することが必要だった。 波動関数が指数関数の形をしていれば関数の形は変わらないが、それ以外の形をしていた場合には波動関数の形はひどく変化を受けることになる。  この状況をベクトル表現で解釈し直すとどのようになるだろうか。  波動関数は状態ベクトルとして表せるのだった。 波動関数に微分を施して変化した関数もやはり関数であって、同じ方法でベクトルとして表せるはずである。  ならば、元のベクトルと変化後のベクトルとの関係をベクトル変換のようなものであると考えてはどうだろうか? ベクトルの変換は行列を使って表すことが出来る。 この考えで行けそうだ。  しかしどんな複雑な変換でも行列で表せると思ったら大間違い。 行列なんていうのは所詮、線形変換を表すことしか出来ないのだ。 線形変換とは、
    f ( ax + by ) = a f (x) + b f (y)
    という性質を持った変換 f のことである。 つまり、元のベクトル x が定数倍されれば変換後のベクトルも同じだけ定数倍されるし、別のベ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。