1-6不確定性原理

全体公開
ダウンロード pdfダウンロード
ページ数9
閲覧数1,101
ダウンロード数11
履歴確認

    ファイル内検索

    資料紹介

    不確定性原理
    歴史を振り返らないと見えないものがある。
    私の疑問
     「不確定性原理」という言葉を聞いたことがあると思う。 解説はそこら中にあふれている。 要はミクロな領域では粒子の位置と運動量は正確には決められず、
    という「不確定性関係」が成り立つ、というものだ。 一方の測定誤差を極めて小さくすれば他方の誤差が極めて増すことになり、結局誤差の積を一定以下には下げることが出来ない。 そこにプランク定数が関係している。 ・・・という内容である。  これがさっぱり分からない。
     いや、理屈が分からないのではない。 私の疑問は普通とはちょっと違って、おおよそ次のようなものだ。
    果たしてそんなに有難がるほどの概念だろうか。 歴史上、どんな文脈で出てきたのか。 量子力学にとってどれほどの意味を持つのか。
     偉そうな疑問だ。 まぁ一緒に疑ってみようじゃないか。 そして不確定性原理が「要る」のか「要らない」のかはっきりさせてやろう。 めちゃめちゃ態度でかい気がするが。
    本当に原理か?
     「原理」というだけあって、この概念を基にして量子力学の体系が作られているのだろうかと考えてみたが、これだけでは当然無理だ。 波長と運動量、周波数とエネルギーの関係も導き出せないし、波動関数やシュレーディンガー方程式が出てくるわけでもない。
     むしろ逆であって、不確定性関係は量子力学の体系から自然に導かれるものであるようだ。 ちょっとやってみようか。
     と言ってもいきなりやるのは不親切だ。 まず「交換関係」について確認し、次に「誤差の意味」について考え、最後にそれらを使って式変形を行う、という3段階に分けて説明するとしよう。
    交換関係
     量子力学では物理量は演算子で表される。 すると、物理量を掛け合わせる時にどちらが先に来るかによって結果が違ってしまう組み合わせがありうる。 座標と運動量が典型的な例である。 先に座標を掛けてしまうと、運動量には座標微分が含まれているから、これは座標と波動関数の両方に演算しなければならなくなる。
     一方、その逆の場合にはそんな心配はない。 つまり、計算する時に勝手に掛ける順番を交換してはいけないことになる。 これを「非可換である」と言う。 二つの演算子が交換できるかどうかは、実際に交換してみて両者の差を取ってやったものを計算しておけばよく分かる。 もし0になるならばどちらを先に掛けようが差はないわけで、交換可能だというわけだ。 座標と運動量についての「交換関係」がどうなっているか計算してみよう。
     ψ は計算に誤解がないように書いておいただけのもので、省略してやることが多い。
     この関係を「交換子」と呼ばれる記号を使って、
    とシンプルに表現することもよく行われる。 他にもエネルギーと時間について、
    という関係も成り立っている。 他の物理量、例えば角運動量などについても同様の関係があるが、それらについてはまだ定義さえ説明していないので出てきたときについでに話すことにしよう。 とりあえずはこれくらい知っていれば十分だ。
     ここで計算した交換関係と不確定性原理との間には深い関わりがあるのだが、それはこの後の式変形を見れば理解できるようになる。 途中でこの関係を当てはめて導くことになるのだから。  その前に量子力学でいう「測定誤差」とは何なのかを確認しておかないといけない。
    誤差の意味
     標準偏差という言葉を知っているだろうか。 テストの採点結果が全体的にどれだけばらついているかを数値化したい時などに使うものだ。 まぁ普通は起こり得ない

    資料の原本内容( テキストデータ全体をみる )

    不確定性原理
    歴史を振り返らないと見えないものがある。
    私の疑問
     「不確定性原理」という言葉を聞いたことがあると思う。 解説はそこら中にあふれている。 要はミクロな領域では粒子の位置と運動量は正確には決められず、
    という「不確定性関係」が成り立つ、というものだ。 一方の測定誤差を極めて小さくすれば他方の誤差が極めて増すことになり、結局誤差の積を一定以下には下げることが出来ない。 そこにプランク定数が関係している。 ・・・という内容である。  これがさっぱり分からない。
     いや、理屈が分からないのではない。 私の疑問は普通とはちょっと違って、おおよそ次のようなものだ。
    果たしてそんなに有難がるほどの概念だろうか。 歴史上、どんな文脈で出てきたのか。 量子力学にとってどれほどの意味を持つのか。
     偉そうな疑問だ。 まぁ一緒に疑ってみようじゃないか。 そして不確定性原理が「要る」のか「要らない」のかはっきりさせてやろう。 めちゃめちゃ態度でかい気がするが。
    本当に原理か?
     「原理」というだけあって、この概念を基にして量子力学の体系が作られているのだろうかと考えてみたが、これだけでは..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。