3-9重力場の方程式へ

全体公開
ダウンロード pdfダウンロード
ページ数7
閲覧数663
ダウンロード数15
履歴確認

    ファイル内検索

    タグ

    資料紹介

    重力場の方程式へ
    やっとたどり着いたね、おめでとう!
    一般相対論の原理
     さあ、いよいよ仕上げである。 ここまでの知識を使って、物質の存在と重力の起源を結び付ける方程式を組み立てよう。 その前に一般相対論が拠り所とする原理について少し確認しておきたい事がある。
     まず一般相対性理論の基本的な理念は、「一般相対性原理」と呼ばれるものであり、「慣性系に限らず、あらゆる座標系は同等である」というものである。 つまり物理法則はあらゆる座標変換に対して形式が変わらない形で表されるべきだと主張している。
     これは式の両辺をテンソルで表してやれば実現できる。
     一般相対性理論のもうひとつの柱は「等価原理」と呼ばれるものであるが、これは「座標変換をうまく選べば、ある一点の近くでは無重力だとみなせて、特殊相対論が成り立っている」というものである。 これについてはすでに「局所直線座標系」の記事で説明したように、リーマン幾何学を使うことでこの思想が実現している。
     このように一般相対論ではもはや「光速度一定」であることは重要視されていない。 無重力だと見なせる特別な座標系を選んだ時に特殊相対論が実現していればそれでいいのである。
     確認は以上である。 つまりあとは式の両辺がテンソルである事さえ徹底すれば原理に忠実でいられるということだ。
    組み立て開始
     前回話したように、ニュートン力学での重力場の源は「質量密度 ρ」であった。 特殊相対論では質量とエネルギーが等価であることが導かれたので、重力の源は「エネルギー密度」だと言い換えても良いだろう。 しかしエネルギー密度は単独ではテンソルではないから、式の中に持ち込むとしたら、運動量密度などと一緒にした「エネルギー運動量テンソル」を使うべきであろう。 それで、これを重力場の方程式の右辺に持ってくることにする。 これはつまり「重力場の源は質量である」と考えていた古い形式を拡張して、「重力場の源はエネルギー運動量テンソルである」という考えを新しく採用することを意味する。
     右辺のエネルギー運動量テンソルが2階の反変テンソルなのだから、左辺も同じ形式のテンソルになるべきだろう。 仮に Xij とでも書いておこう。
     ところで「エネルギー運動量テンソル」は次の関係を満たしていた。
     これはエネルギー保存、運動量保存の式である。 これは平らな時空を前提に導いた式なのだった。 リーマン幾何学で学んだように、テンソルをただ微分したものはテンソルではない。 ではこの式が時空が曲がっていても使えるようにしてやるにはどうすれば良いかと言うと、すでに良く分かっているだろう。
    と拡張してやればよい。 そうなると左辺の Xij を共変微分したものも同じように0にならなければいけないはずだ。
     そんな性質を持った量 Xij がそうそう都合よく見付かるはずが・・・いや、あったよ!! 前に出てきたアインシュタイン・テンソルだ。 しかしこれをそのまま使ったのでは次元が合わないので、係数 k を付けて調整してやることにする。
     これが相対論における「重力場の方程式」すなわち「アインシュタイン方程式」である。 何とあっけなく導かれてしまったことか。
    宇宙項
     ここでアインシュタインは少し迷った。この式に次のようなもう一つの項を付け足しても両辺はやはりテンソルであることに変わりない。
     しかも、この追加項の共変微分を取ってやれば計量条件でちゃんと0になるのである。 物理的意味はよく分からないのだが、これを加えたとしても最初の仮定は何一つ破

    資料の原本内容( テキストデータ全体をみる )

    重力場の方程式へ
    やっとたどり着いたね、おめでとう!
    一般相対論の原理
     さあ、いよいよ仕上げである。 ここまでの知識を使って、物質の存在と重力の起源を結び付ける方程式を組み立てよう。 その前に一般相対論が拠り所とする原理について少し確認しておきたい事がある。
     まず一般相対性理論の基本的な理念は、「一般相対性原理」と呼ばれるものであり、「慣性系に限らず、あらゆる座標系は同等である」というものである。 つまり物理法則はあらゆる座標変換に対して形式が変わらない形で表されるべきだと主張している。
     これは式の両辺をテンソルで表してやれば実現できる。
     一般相対性理論のもうひとつの柱は「等価原理」と呼ばれるものであるが、これは「座標変換をうまく選べば、ある一点の近くでは無重力だとみなせて、特殊相対論が成り立っている」というものである。 これについてはすでに「局所直線座標系」の記事で説明したように、リーマン幾何学を使うことでこの思想が実現している。
     このように一般相対論ではもはや「光速度一定」であることは重要視されていない。 無重力だと見なせる特別な座標系を選んだ時に特殊相対論が実現..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。