3-2測地線

全体公開
ダウンロード pdfダウンロード
ページ数5
閲覧数488
ダウンロード数13
履歴確認

    ファイル内検索

    タグ

    資料紹介

    測地線
    意外と単純に導けるもんだな。
    平面人になりきる
     我々は面白い数学的道具を手に入れた。 あるベクトルを微小な平行移動させたときに、移動した先でそのベクトルがどう表されるべきかが計算できるようになったのである。
     この道具を持って、いよいよ曲がった空間へ出かけよう。
     イメージするためには、3次元の空間の中に存在する曲がった面を思い浮かべながらも、自分はその面上に住む2次元人であって、認識は2つの次元のみに限られていると思い込んでもらいたい。 ああ、これは何という足枷だろう。 今や自分にとってこの面だけが認識できる世界の全てなのだ。
    曲面上での平行なベクトル
     この平面的な世界の中でもベクトルは定義できる。 そしてそのベクトルを平行移動させてやることも出来る。
     曲面の上でベクトルの平行移動をしたら、曲面を飛び出した方向を向いてしまうことになるのではないか、と考える人はまだ3次元の思考を捨てきれていない。 そもそも前回学んだ平行移動の意味は何だったかというと、ある点でのベクトルをその近くの点へそのまま移動して、その地点での基底ベクトルとの内積を取ったらどう表せるか、ということであった。 つまり、話は2次元の中だけで完結しているのである。
     この平面世界の上に一つの曲線コースがあるのを想像してみよう。 「曲線コース」というのは、この平面世界の住人にとっての曲線のことであって、曲がった面上の線だからそれは当然曲線になると言っているわけではない。
     さらにこの曲線上に目盛りを振って、それを σ で表そう。 この目盛りは等間隔でなくても良くて、位置を表すパラメータの役割をしてくれれば十分である。 σ が決まれば位置が決まるのである。
     さて、この曲面上には一面にベクトルが定義されており、場所によって色んな方向を向いていたり大きさも異なっていたりするわけだが、先ほど考えた線上に限ってはどの点にあるベクトルを見ても、たまたま全て平行で、かつ同じ長さになっていたとする。 たまたまでは起こり得ないようなかなり特殊な状況ではあるが、そういうことがあったとしよう。
     つまり線上にある、一つのベクトルを平行移動したものが線上の全ての点にあるということだ。 このような特別なベクトルが満たす方程式を立ててみたい。
     曲線上のある位置 σ にある反変ベクトル Ai を曲線に沿って少し平行移動して σ + dσ にまで持ってきた時、それが σ + dσ 地点に元からあるベクトルと等しいのであるから、
    という関係が成り立っていることだろう。 ただし dx というのは、dσ だけ移動した時の距離である。 これを移項してやると
    であり、両辺を dσで割ってやると、
    となる。 dσ を無限小へ持って行けば次のようになる。
     これがこの特殊な状況を実現しているベクトル A (σ) が満たす微分方程式である。 この式は少し後で使う事になる。
    測地線
     ここまで来れば残りの話は簡単だ。 パラメータ σ の変化に従って、先ほど考えた適当な曲線上を我々自身が移動する状況をイメージしよう。 今、我々が向かっている方向 vi を知りたければ、
    という計算をすればいい。 もし σ として時間を使っていたならばこれは速度ベクトルを意味することになるのだろう。 しかし σ は別に時間でなくてもいい。 要するに vi はどの方向へ向かっているかを表しているのであり、曲面上にいる人にとっての、曲線コースの接線ベクトルである。
     何度も言うようだが、この曲面上に住んでいる我々

    資料の原本内容( テキストデータ全体をみる )

    測地線
    意外と単純に導けるもんだな。
    平面人になりきる
     我々は面白い数学的道具を手に入れた。 あるベクトルを微小な平行移動させたときに、移動した先でそのベクトルがどう表されるべきかが計算できるようになったのである。
     この道具を持って、いよいよ曲がった空間へ出かけよう。
     イメージするためには、3次元の空間の中に存在する曲がった面を思い浮かべながらも、自分はその面上に住む2次元人であって、認識は2つの次元のみに限られていると思い込んでもらいたい。 ああ、これは何という足枷だろう。 今や自分にとってこの面だけが認識できる世界の全てなのだ。
    曲面上での平行なベクトル
     この平面的な世界の中でもベクトルは定義できる。 そしてそのベクトルを平行移動させてやることも出来る。
     曲面の上でベクトルの平行移動をしたら、曲面を飛び出した方向を向いてしまうことになるのではないか、と考える人はまだ3次元の思考を捨てきれていない。 そもそも前回学んだ平行移動の意味は何だったかというと、ある点でのベクトルをその近くの点へそのまま移動して、その地点での基底ベクトルとの内積を取ったらどう表せるか、というこ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。