3-1共変微分

全体公開
ダウンロード pdfダウンロード
ページ数12
閲覧数942
ダウンロード数20
履歴確認

    ファイル内検索

    資料紹介

    共変微分
    計算が丁寧なのは親切心からじゃない。 ただ自分が気になるからだ。
    リーマン幾何学
     これからリーマン幾何学の勉強を始めよう。 一般相対性理論に使うための、ごく初歩的なところだけを説明する予定だ。 これから話すことが全て理解できたとしてもリーマン幾何学を理解したと過信してはいけない。 (説明している私が理解していないのだから。)
     我々は小学生の頃から平らなノートの上に三角形やら四角形やらを描いて図形やベクトルを勉強してきた。 これらは平らな空間を前提にしてきたものであり「ユークリッド幾何学」と呼ばれている。 しかしリーマン幾何学ではノートそのものが曲がっている場合を扱う。
     それは座標の目盛りが曲がっていることとは関係ない。 だから単に座標を極座標で書き換えたようなものとは違う。 平面の上に描いた図形をデカルト座標以外の座標を使って表したからといって、その図形の性質そのものが変わってしまうわけではないからだ。
     ではどんな座標を使えばそのような曲がった状況を表せるというのだろうか。 例えば、( r, θ, ) の3次元の極座標を考える。 ここでパラメータの一つである r が r = a で一定とでも置いてやれば、それは球面を表す事になる。 つまり、この面のすべての点が ( θ, ) という2つのパラメータのみで表される状況である。 何もかもがこの面上で起きるとき、・・・もう一つのパラメータ r の存在が一切出てこないとき、これは曲がった面での幾何学だと言える事になる。
     曲がった面、曲がった空間を表すこと自体はこのようにそれほど難しいことではない。 大切なのは、その面の上でどんなことが成り立っているかを知ることである。
    共変微分
     しかししばらくは「ユークリッド」の平らな空間を基礎に置いて議論しよう。 曲がった空間の話が出てくるのはもっと後になる。 その時にはちゃんと宣言するので、いつの間にか曲がった空間の話に突入していた、なんてことになりはしないかと心配する必要はない。
     デカルト座標 Xi で表した共変ベクトル Ai を極座標などの別の方法で表した座標系 xi に変換したものを ai と表すとすると、
    という関係が成り立っている。 元に戻したければ、
    という関係を使う。 これは第1部で学んだ事だ。
     さて、ここで Ai が全空間で一定のベクトルだったとしよう。 静磁場や静電場のようなイメージだ。 これを Xi で微分してやると、変化がないのだから当然
    となる。 同じことを別の座標系で行うとどうなるか。
    となって0にはならない。 ベクトルは一定であるのに、それを測る座標の目盛りの方が場所によって変化するので、計算上はあたかも変化しているかのように見なされてしまうのである。 これは面倒だ。
     ベクトルそのものは変化していないのだから、たとえ別の座標系で表されていようとも、そのことを知ることが出来るような手段が欲しい。 そこでどうすれば良いかと言うと、先ほどの結果を予め引いておいたものを使えばいいのである。 つまり、
    という演算を定義する。  この新たに定義された演算を ai の「共変微分」と呼ぶ。 この名前の由来は今回の記事の後の方で説明する。
     すると、Ai が定ベクトルである場合には、
    であることが言える。
    共変微分の別定義
     先ほどの共変微分の定義の第2項目はごちゃごちゃしていて毎回書くのが面倒くさい。 そこで、次のように表す事にする。
     つまり、
    だということだ。 この Γ 記号を「クリストッフェ

    資料の原本内容( テキストデータ全体をみる )

    共変微分
    計算が丁寧なのは親切心からじゃない。 ただ自分が気になるからだ。
    リーマン幾何学
     これからリーマン幾何学の勉強を始めよう。 一般相対性理論に使うための、ごく初歩的なところだけを説明する予定だ。 これから話すことが全て理解できたとしてもリーマン幾何学を理解したと過信してはいけない。 (説明している私が理解していないのだから。)
     我々は小学生の頃から平らなノートの上に三角形やら四角形やらを描いて図形やベクトルを勉強してきた。 これらは平らな空間を前提にしてきたものであり「ユークリッド幾何学」と呼ばれている。 しかしリーマン幾何学ではノートそのものが曲がっている場合を扱う。
     それは座標の目盛りが曲がっていることとは関係ない。 だから単に座標を極座標で書き換えたようなものとは違う。 平面の上に描いた図形をデカルト座標以外の座標を使って表したからといって、その図形の性質そのものが変わってしまうわけではないからだ。
     ではどんな座標を使えばそのような曲がった状況を表せるというのだろうか。 例えば、( r, θ, ) の3次元の極座標を考える。 ここでパラメータの一つである r..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。