2-5現象の進む方向

全体公開
ダウンロード pdfダウンロード
ページ数9
閲覧数823
ダウンロード数21
履歴確認

    ファイル内検索

    資料紹介

    現象の進む方向
    エントロピー増大はただの標語じゃない。 応用がある。
    孤立系
     前にエントロピー増大の話をしたが、これは
    という関係に d'Q = 0 という断熱の条件を代入する事で得られたのであり、 断熱系で不可逆過程が起こるときだけに言える話であった。 断熱系以外の不可逆過程では必ずしもエントロピーが増大するというわけではない。
     例えば等温変化の場合、圧力や体積が変化しても温度を一定に保つ必要があるために外界との熱のやり取りが行われる。 その結果としてエントロピーは上がりもすれば下がりもする。 そのような条件の中で不可逆過程が起きる時には、エントロピー増大則の代わりに何か言えるのだろうか。
     等温変化、すなわち d'Q ≠ 0 の場合に、不可逆過程が起こった場合と起こらなかった場合とを比べるならば、前者の方がエントロピーの変化が増加気味になるだろう。 これは先ほどの式から言える。 しかしこれを「不可逆変化が起こるとエントロピーが増大する」と言ってしまうと正確ではない。 「エントロピーは増大する事も減少する事もあるが、不可逆変化が起きる時にはあまり減少しないで済む」と言うにとどめておくべきか。 これが言葉を使った表現の面倒なところだ。 「エントロピー増大則」ほど歯切れが良くない。
     もっと分かりやすい視点はないものか。 そう言えば、等温であるためには必ず外部と熱のやり取りをして調整しているわけで、こちらが熱をもらえばこちらのエントロピーは増大するし、代わりに相手のエントロピーは減少する。 同じ温度で接している限り、そのエントロピー変化は符号が違うだけで同じ量になるはずである。  だから熱をやり取りしている外部の系もひっくるめて全体を考えれば、熱のやり取りによるエントロピー変化の部分は打ち消されて、不可逆過程が起きる時だけエントロピーが増大していると言えるようになる。 しかし外部も含めた全体は断熱系だと考えられる状態なので、これは何ら新しい理解に達したわけではない。
     どんな系であってもそれと関連している外部の系の全てを含めて考えれば、それら以外の世界から孤立したものとして扱う事が出来る。 それを「孤立系」と呼ぶ。 「孤立系」というのは、断熱系をより厳しくした概念であって、外部と熱だけでなく仕事のやり取りさえも行わないような系のことを言う。 エントロピー増大則は断熱でありさえすれば成り立つものなので、孤立系でも当然成り立つ法則だ。
     エントロピー増大則が特に大切に扱われるのは、そうやってどんな系でも断熱系、孤立系に拡張して考えてやることができて、そこで広く成り立つ概念だからだ。 しかしもうしばらくは断熱ではない系、特に等温変化について考え続けよう。
    最大仕事の原理
     上に出てきた関係を
    と書き直して熱力学の第1法則 dU = d'Q + d'W に当てはめると、
    が言える。 ヘルムホルツの自由エネルギー F の全微分は
    であるが、等温変化 dT = 0 という条件の元では、
    であるので、
    という関係が言えることになる。 この式の 等号が成り立つ場合 についてはすでに説明した。 なぜ F が「自由エネルギー」と呼ばれるのかもそこで説明した。 今回は不等号の意味を考えよう。
     これを解釈するに、「不可逆過程が起こる時には、外部から仕事 d'W をしても、内部に蓄えられる自由エネルギーの増加分 dF は少なくなってしまう」ということだろうか。
     これでもいいが、ちょっとイメージをつかみにくい。 式の符号を逆にして考えてみよう

    資料の原本内容( テキストデータ全体をみる )

    現象の進む方向
    エントロピー増大はただの標語じゃない。 応用がある。
    孤立系
     前にエントロピー増大の話をしたが、これは
    という関係に d'Q = 0 という断熱の条件を代入する事で得られたのであり、 断熱系で不可逆過程が起こるときだけに言える話であった。 断熱系以外の不可逆過程では必ずしもエントロピーが増大するというわけではない。
     例えば等温変化の場合、圧力や体積が変化しても温度を一定に保つ必要があるために外界との熱のやり取りが行われる。 その結果としてエントロピーは上がりもすれば下がりもする。 そのような条件の中で不可逆過程が起きる時には、エントロピー増大則の代わりに何か言えるのだろうか。
     等温変化、すなわち d'Q ≠ 0 の場合に、不可逆過程が起こった場合と起こらなかった場合とを比べるならば、前者の方がエントロピーの変化が増加気味になるだろう。 これは先ほどの式から言える。 しかしこれを「不可逆変化が起こるとエントロピーが増大する」と言ってしまうと正確ではない。 「エントロピーは増大する事も減少する事もあるが、不可逆変化が起きる時にはあまり減少しないで済む」と言うにと..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。