2-1ジュールの法則

全体公開
ダウンロード pdfダウンロード
ページ数6
閲覧数2,261
ダウンロード数15
履歴確認

    ファイル内検索

    タグ

    資料紹介

    ジュールの法則
    内部エネルギーは温度だけで決まるのか。
    ゲイリュサック・ジュールの実験
     容器に閉じ込められていた気体が真空中へ広がる時、その気体には外部から圧力が掛かっていないので仕事をしないはずだ。 こういう状況を「自由膨張」という。 これに関連して次のような実験を考えよう。
     2つの容器がパイプでつながれており、その途中でコックが閉じられている。 片方には気体が入っているが、もう一方は真空になっている。 このコックを開ければ、気体は両方の容器一杯にまで広がることになり、体積 V は増加するだろう。 仕事はしないので内部エネルギーに変化はない。 いや、実際のところ、熱力学の範囲では内部エネルギーの実体が何であるのかは分からないので、定義に従って「変化はない」と考えておくしかないだろう。
     ところで圧力は体積が増えた分だけ減るだろうか? 感覚的にはそんな気がする。 しかし、圧力と体積が反比例するのは温度が一定という条件でのことであった。  そうだ、このときの温度変化はどうなっているのだろうか。 気体が薄まった分だけ温度も下がるのだろうか? 温度とは何か、という基本的な問いにまだ答えていなかった。 もちろん熱力学はこの先もこの問いには答えないのだが。
     この実験は、初めにゲイリュサックが1809年に、次いでジュールが1845年に精度を上げて追試したために、「ゲイリュサック・ジュールの実験」と呼ばれている。
    実験の結果
     実はこの実験で、温度は下がらないのである。
     不思議な話だ。 もし小さな箱に100万℃の気体を入れておいて、これを真空の宇宙で開いて中の気体が全宇宙に行き渡ったら、宇宙全体が100万℃になるとでもいうのだろうか? この実験が意味するのはそういうことだ。 もし宇宙に星やちりが一切なければきっとそうなるのだろう。
     こうして作った100万℃の宇宙の中にいると、自分は高温で焼け死んでしまうのだろうか? 多分そんなことにはならないはずだ。 気体の密度が低い分、比熱は低いだろう。 だから自分の体に熱が行き渡る前に周りの温度は一気に下がるはずだ。
     一体、温度というのは何なのだろうか? 前に説明した「熱力学的温度」の定義から、温度は熱量、すなわちエネルギーに関連した量であることは想像が付くが、同じではない。 エネルギーは同じ状態のものを2つ持ってきて合わせれば2倍になるが、温度は2つ合わせても変わらないではないか。
    理論で確認
     その内部エネルギーについてだが、もしこれが ( T, V ) の関数であるとすれば
    と書ける。 この実験で dV ≠ 0 であるにも関わらず dU = 0 かつ dT = 0 であるからには、
    であるに違いない。 よって、内部エネルギーの全微分は次のように書けることになる。
     つまり内部エネルギーは温度のみの関数であって、体積には依存しないと言えるわけだ。
    本当だろうか?
     そもそも気体の熱容量などというのは容器の熱容量に比べれば小さいものであって、たとえ気体に少々の温度変化があったとしてもすぐに容器の温度と同じになってしまうのではないだろうか。 この実験は古いものでもあり、たとえ優秀な実験家であるジュールが努力したとは言え、どの程度の精度だったのか怪しいものだ。
     数式で確認してみよう。 すでに何度か出てきた次の関係式を使う。
     これを元にして、T を固定するという条件で U を V で偏微分したものを作ると、
    となる。 これが0であるならば実験結果が正しかったと言えることになるわけだ。

    資料の原本内容( テキストデータ全体をみる )

    ジュールの法則
    内部エネルギーは温度だけで決まるのか。
    ゲイリュサック・ジュールの実験
     容器に閉じ込められていた気体が真空中へ広がる時、その気体には外部から圧力が掛かっていないので仕事をしないはずだ。 こういう状況を「自由膨張」という。 これに関連して次のような実験を考えよう。
     2つの容器がパイプでつながれており、その途中でコックが閉じられている。 片方には気体が入っているが、もう一方は真空になっている。 このコックを開ければ、気体は両方の容器一杯にまで広がることになり、体積 V は増加するだろう。 仕事はしないので内部エネルギーに変化はない。 いや、実際のところ、熱力学の範囲では内部エネルギーの実体が何であるのかは分からないので、定義に従って「変化はない」と考えておくしかないだろう。
     ところで圧力は体積が増えた分だけ減るだろうか? 感覚的にはそんな気がする。 しかし、圧力と体積が反比例するのは温度が一定という条件でのことであった。  そうだ、このときの温度変化はどうなっているのだろうか。 気体が薄まった分だけ温度も下がるのだろうか? 温度とは何か、という基本的な問いにまだ答..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。