4-5ラグランジアン密度を使う

全体公開
ダウンロード pdfダウンロード
ページ数6
閲覧数721
ダウンロード数9
履歴確認

    ファイル内検索

    タグ

    資料紹介

    ラグランジアン密度を使う
    連続体の解析力学の説明の残り部分。
    何だかちょっと合わないぞ
     前回、前々回と、汎関数微分についてのまとめ記事を挟んだ。 これはその前の「 連続体の解析力学 」の記事中で出て来た次のような方程式を見てもたじろぐことの無いようにしたかったからである。
     前回までの説明を読んで、これを具体的に解くことが出来るようになっただろうか。 少し状況の再確認をしておこう。 上の式の中の L はラグランジアンであり、それはラグランジアン密度 を使って
    と表されるのだった。 前に書いたときには積分範囲を表記しなかったが、汎関数微分について書いている内に定積分と不定積分に大きな意味の違いがあることに気付いたので、ここでは急遽書き足したのである。 本来こういう意味なのだった。 これまで書いた全ての記事ではあまりそのようなことを意識して来なかったが、大丈夫だっただろうか。
     ひもの運動の場合には は
    と書けるものであり、つまり、 と との関数になっていると言える。 しかしもう少し複雑な問題を考える時には が y を直接含むこともあったりするので、将来のために少し考えを広げて、 は y と と との関数になっていると考えておこう。
     汎関数微分のみに集中した前回までの特別講義では I や F (x) や f (x) という記号を使ってきた。 今回の話ではこれらに対応するのがそれぞれ、 L や や y (x) だというわけである。
     ん? 何か変だ。 関数 y というのは y (x) ではなくて y ( x, t ) という形ではなかったか。 前回までの説明には t に相当するものは出て来なかった。 まぁ、それだけなら t は定数みたいなものだと考えて無視してやれば済むのだろうが、どうやらそうも行かない。  なぜなら、その t を使って微分した というものが、 の中に含まれてしまっているからだ。
     このような要素が加わることで、前回までに説明した話と比べてどんな相違点が出てくることになるのか、落ち着いて考えてみよう。
    汎関数微分の計算
     まず (1) 式を見て、第 2 項の方が簡単そうだから、そちらから考えてみよう。 これは y が y + δy に変化する時の L の変化を考えようとしているのである。 y が変化すればそれに合わせて と も変化するので、それによる の変化は、
    と書けるのだろう。 これを (2) 式に代入してやって、全ての項を δy に合わせてまとめるべく部分積分を行うというのが、これまでのテクニックであった。 しかしこの第 3 項は厄介なことに、まとめようがないのである。
     しかし安心していい。 実はここで第 3 項を考えに入れる必要は元々なかったのである。 騙し討ちをしたようで少し心苦しいが、今さらながらその理由を説明しよう。
     (1) 式を作ったところまでさかのぼって考えて欲しい。 この式のもとになったラグランジュ方程式は、 L の変数として y と を使っていた。 これらはそれぞれ独立な変数として扱われており、式も偏微分を使って表されていたはずだ。 つまり、y で偏微分するときには は変化しないと見なし、 で偏微分するときには y は変化しないと見なしていたのである。 実は今回の (1) 式の汎関数微分は、偏微分のように考えて計算されるべきなのだ。
     (1) 式を見た限りはそんな風に計算すべきだなんてことは読み取れないのだが、式の導出の経緯の中にそのような意味が隠されているのである。 「いやいや、そん

    資料の原本内容( テキストデータ全体をみる )

    ラグランジアン密度を使う
    連続体の解析力学の説明の残り部分。
    何だかちょっと合わないぞ
     前回、前々回と、汎関数微分についてのまとめ記事を挟んだ。 これはその前の「 連続体の解析力学 」の記事中で出て来た次のような方程式を見てもたじろぐことの無いようにしたかったからである。
     前回までの説明を読んで、これを具体的に解くことが出来るようになっただろうか。 少し状況の再確認をしておこう。 上の式の中の L はラグランジアンであり、それはラグランジアン密度 を使って
    と表されるのだった。 前に書いたときには積分範囲を表記しなかったが、汎関数微分について書いている内に定積分と不定積分に大きな意味の違いがあることに気付いたので、ここでは急遽書き足したのである。 本来こういう意味なのだった。 これまで書いた全ての記事ではあまりそのようなことを意識して来なかったが、大丈夫だっただろうか。
     ひもの運動の場合には は
    と書けるものであり、つまり、 と との関数になっていると言える。 しかしもう少し複雑な問題を考える時には が y を直接含むこともあったりするので、将来のために少し考えを広げて、..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。