3-2ベルヌーイの問題提起

全体公開
ダウンロード pdfダウンロード
ページ数6
閲覧数781
ダウンロード数16
履歴確認

    ファイル内検索

    タグ

    資料紹介

    ベルヌーイの問題提起
    ニュートンは大天才だよ。
    最速降下線問題
     1696年、ベルヌーイが次のような問題を提起した。
     「質点がある点 A からスタートして滑らかな斜面を転がり落ちるとき、最短時間で別の点 B まで辿り着くには斜面をどのような形にしたら良いだろうか。」
     というものである。 この問題は「最速降下線問題」と呼ばれている。 ニュートンがこの問題を受け取った日に、仕事帰りで疲れていたにも関わらず、一夜にして解いてしまったという話は有名である。
     「昔の人は良かったなぁ、発明するものが色々あって。 俺が昔に行ったら超天才だよ。」 なんて思っている人は今夜中にこの問題を解いてニュートンと知恵比べをしてみると良いだろう。 (チャレンジする人はこれより下を見ちゃダメだよ)
    この問題の解き方
     解き方自体はそれほど難解なものではない。 大抵の人が思いついてまずやってみるのは、この斜面の曲線を関数 f (x) で表してやり、質点がこの斜面を転がり終えるのにかかる全時間を求めてやることだろう。 少々面倒ではあるが、これくらいは高校の知識があれば何とかなるかも知れない。 落下距離からエネルギー保存則を使って速度が求められるだろう。 そして、斜面の傾きからその水平速度が求められるはずだ。 水平距離 dx だけ進む間にかかる時間がこれで求められる。 これを水平距離分だけ積分してやれば下の式になるというわけだ。
     ただし簡単になるように下向きを正とし、スタート地点Aでの x 座標を0としてある。 気になる人は自分でやってみるといい。
     凡人はここで行き詰まる。 なぜって、時間 t を最低にするような関数 f を求めたいにもかかわらず何を変数にして最低値を求めてやればいいか分からないからである。 ここで発想の飛躍が必要とされる。 「変分法」と呼ばれるアイデアを使うのだ。
     それは次のような考え方をする。 いきなりだが、答えとなる「最速降下線」が見つかったとする。 当然のことだが、この軌道をほんの少しだけずらしたらそれは最速降下線ではなくなるだろう。  どのようにずらしてもそのようなことになる。  そこで、軌道をずらした度合いを横軸にとって、軌道を駆け抜けるのにかかる時間 t を縦軸にとってグラフにしてやると、正しい解を与えるところではこのグラフは最低値をとり、この点でのグラフの傾きは0になるわけだ。 何だかだんだん解けそうな気がしてきただろう?
     この正しい軌道からのごく僅かのずれを δf (x) と表すことにしよう。 これは x についての関数であって、スタート地点 A とゴール地点 B の条件を変えないように δf (A) = δf (B) = 0 としておかなければならない。 この軌道のわずかなずれ δf (x) を「変分」と呼ぶ。
     そして軌道を表す関数 f (x) が f (x) + δf (x) になった場合に、降下時間 t がどれだけ変化するかを計算してやるのだ。 先ほどのグラフの理屈を使えば、降下時間 t が最短になる場合にはコースをごく僅か δf だけ動かしても降下時間の変化 δt は δf に比較して 0 と見なせる程度にとどまるはずである! グラフの傾きが 0 だというのはそういう意味だ。 このことを数式では次のように表す。
     これが成り立つところが解になっているということである。 普通の微分によく似た話だろう? さあ、納得したら計算に取り掛かろう。
    実際の計算
     この後の計算を分かりやすくするために先ほどの降下時間 t

    資料の原本内容( テキストデータ全体をみる )

    ベルヌーイの問題提起
    ニュートンは大天才だよ。
    最速降下線問題
     1696年、ベルヌーイが次のような問題を提起した。
     「質点がある点 A からスタートして滑らかな斜面を転がり落ちるとき、最短時間で別の点 B まで辿り着くには斜面をどのような形にしたら良いだろうか。」
     というものである。 この問題は「最速降下線問題」と呼ばれている。 ニュートンがこの問題を受け取った日に、仕事帰りで疲れていたにも関わらず、一夜にして解いてしまったという話は有名である。
     「昔の人は良かったなぁ、発明するものが色々あって。 俺が昔に行ったら超天才だよ。」 なんて思っている人は今夜中にこの問題を解いてニュートンと知恵比べをしてみると良いだろう。 (チャレンジする人はこれより下を見ちゃダメだよ)
    この問題の解き方
     解き方自体はそれほど難解なものではない。 大抵の人が思いついてまずやってみるのは、この斜面の曲線を関数 f (x) で表してやり、質点がこの斜面を転がり終えるのにかかる全時間を求めてやることだろう。 少々面倒ではあるが、これくらいは高校の知識があれば何とかなるかも知れない。 落下距離からエ..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。