2-6ハミルトニアン

全体公開
ダウンロード pdfダウンロード
ページ数4
閲覧数609
ダウンロード数13
履歴確認

    ファイル内検索

    タグ

    資料の原本内容( テキストデータ全体をみる )

    ハミルトニアン
    独立変数の変換
     ラグランジアンは一般化座標 と一般化速度 の関数であった。 しかし、ここからは を使うのをやめて、代わりに一般化運動量 を使った体系に移行したい。 それには次のような理由がある。
    (1) ラグランジュ方程式は時間の微分方程式であるが、それに含まれる変数 自体がすでに時間の 1 階微分であり、結局解くべき式は時間の 2 階微分になってしまう。 これは単に解きにくいだけでなく、理論を展開する上でもすっきりしない。
    (2) と正準共役な量が式に含まれている方が対称性の議論がしやすそうだ。
    (3) やってみたらいろいろと便利だった。
     多分、(3) が一番大きな理由だと思う。 上の二つは後付けの理由だ。
     独立変数を変換する方法はすで前回説明した通りである。 大変都合の良いことに・・・というか、こうなっているからこそ と の入れ替えが可能なのだが、
    という関係がすでに言えているので、
    という関係式で新しい関数 H を定義してやればよい。
     ここで Σ 記号を使っているのは、 3N 個の変数 を一度に 3N 個の に変換していることを意味する。 複数の..

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。